Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements an abstract sparse conditional propagation algorithm,
  10. // modeled after SCCP, but with a customizable lattice function.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
  15. #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
  16.  
  17. #include "llvm/ADT/SmallPtrSet.h"
  18. #include "llvm/IR/Constants.h"
  19. #include "llvm/IR/Instructions.h"
  20. #include "llvm/Support/Debug.h"
  21. #include <set>
  22.  
  23. #define DEBUG_TYPE "sparseprop"
  24.  
  25. namespace llvm {
  26.  
  27. /// A template for translating between LLVM Values and LatticeKeys. Clients must
  28. /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
  29. template <class LatticeKey> struct LatticeKeyInfo {
  30.   // static inline Value *getValueFromLatticeKey(LatticeKey Key);
  31.   // static inline LatticeKey getLatticeKeyFromValue(Value *V);
  32. };
  33.  
  34. template <class LatticeKey, class LatticeVal,
  35.           class KeyInfo = LatticeKeyInfo<LatticeKey>>
  36. class SparseSolver;
  37.  
  38. /// AbstractLatticeFunction - This class is implemented by the dataflow instance
  39. /// to specify what the lattice values are and how they handle merges etc.  This
  40. /// gives the client the power to compute lattice values from instructions,
  41. /// constants, etc.  The current requirement is that lattice values must be
  42. /// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
  43. /// lattice keys must be able to be used as keys of a mapping data structure.
  44. /// Internally, the generic solver currently uses a DenseMap to map lattice keys
  45. /// to lattice values.  If the lattice key is a non-standard type, a
  46. /// specialization of DenseMapInfo must be provided.
  47. template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
  48. private:
  49.   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
  50.  
  51. public:
  52.   AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
  53.                           LatticeVal untrackedVal) {
  54.     UndefVal = undefVal;
  55.     OverdefinedVal = overdefinedVal;
  56.     UntrackedVal = untrackedVal;
  57.   }
  58.  
  59.   virtual ~AbstractLatticeFunction() = default;
  60.  
  61.   LatticeVal getUndefVal()       const { return UndefVal; }
  62.   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
  63.   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
  64.  
  65.   /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
  66.   /// to the analysis (i.e., it would always return UntrackedVal), this
  67.   /// function can return true to avoid pointless work.
  68.   virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
  69.  
  70.   /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
  71.   /// given LatticeKey.
  72.   virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
  73.     return getOverdefinedVal();
  74.   }
  75.  
  76.   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
  77.   /// one that the we want to handle through ComputeInstructionState.
  78.   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
  79.  
  80.   /// MergeValues - Compute and return the merge of the two specified lattice
  81.   /// values.  Merging should only move one direction down the lattice to
  82.   /// guarantee convergence (toward overdefined).
  83.   virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
  84.     return getOverdefinedVal(); // always safe, never useful.
  85.   }
  86.  
  87.   /// ComputeInstructionState - Compute the LatticeKeys that change as a result
  88.   /// of executing instruction \p I. Their associated LatticeVals are store in
  89.   /// \p ChangedValues.
  90.   virtual void
  91.   ComputeInstructionState(Instruction &I,
  92.                           DenseMap<LatticeKey, LatticeVal> &ChangedValues,
  93.                           SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
  94.  
  95.   /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
  96.   virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
  97.  
  98.   /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
  99.   virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
  100.  
  101.   /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
  102.   /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
  103.   /// returned value must have the same type. This function is used by the
  104.   /// generic solver in attempting to resolve branch and switch conditions.
  105.   virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
  106.     return nullptr;
  107.   }
  108. };
  109.  
  110. /// SparseSolver - This class is a general purpose solver for Sparse Conditional
  111. /// Propagation with a programmable lattice function.
  112. template <class LatticeKey, class LatticeVal, class KeyInfo>
  113. class SparseSolver {
  114.  
  115.   /// LatticeFunc - This is the object that knows the lattice and how to
  116.   /// compute transfer functions.
  117.   AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
  118.  
  119.   /// ValueState - Holds the LatticeVals associated with LatticeKeys.
  120.   DenseMap<LatticeKey, LatticeVal> ValueState;
  121.  
  122.   /// BBExecutable - Holds the basic blocks that are executable.
  123.   SmallPtrSet<BasicBlock *, 16> BBExecutable;
  124.  
  125.   /// ValueWorkList - Holds values that should be processed.
  126.   SmallVector<Value *, 64> ValueWorkList;
  127.  
  128.   /// BBWorkList - Holds basic blocks that should be processed.
  129.   SmallVector<BasicBlock *, 64> BBWorkList;
  130.  
  131.   using Edge = std::pair<BasicBlock *, BasicBlock *>;
  132.  
  133.   /// KnownFeasibleEdges - Entries in this set are edges which have already had
  134.   /// PHI nodes retriggered.
  135.   std::set<Edge> KnownFeasibleEdges;
  136.  
  137. public:
  138.   explicit SparseSolver(
  139.       AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
  140.       : LatticeFunc(Lattice) {}
  141.   SparseSolver(const SparseSolver &) = delete;
  142.   SparseSolver &operator=(const SparseSolver &) = delete;
  143.  
  144.   /// Solve - Solve for constants and executable blocks.
  145.   void Solve();
  146.  
  147.   void Print(raw_ostream &OS) const;
  148.  
  149.   /// getExistingValueState - Return the LatticeVal object corresponding to the
  150.   /// given value from the ValueState map. If the value is not in the map,
  151.   /// UntrackedVal is returned, unlike the getValueState method.
  152.   LatticeVal getExistingValueState(LatticeKey Key) const {
  153.     auto I = ValueState.find(Key);
  154.     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
  155.   }
  156.  
  157.   /// getValueState - Return the LatticeVal object corresponding to the given
  158.   /// value from the ValueState map. If the value is not in the map, its state
  159.   /// is initialized.
  160.   LatticeVal getValueState(LatticeKey Key);
  161.  
  162.   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
  163.   /// basic block to the 'To' basic block is currently feasible.  If
  164.   /// AggressiveUndef is true, then this treats values with unknown lattice
  165.   /// values as undefined.  This is generally only useful when solving the
  166.   /// lattice, not when querying it.
  167.   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
  168.                       bool AggressiveUndef = false);
  169.  
  170.   /// isBlockExecutable - Return true if there are any known feasible
  171.   /// edges into the basic block.  This is generally only useful when
  172.   /// querying the lattice.
  173.   bool isBlockExecutable(BasicBlock *BB) const {
  174.     return BBExecutable.count(BB);
  175.   }
  176.  
  177.   /// MarkBlockExecutable - This method can be used by clients to mark all of
  178.   /// the blocks that are known to be intrinsically live in the processed unit.
  179.   void MarkBlockExecutable(BasicBlock *BB);
  180.  
  181. private:
  182.   /// UpdateState - When the state of some LatticeKey is potentially updated to
  183.   /// the given LatticeVal, this function notices and adds the LLVM value
  184.   /// corresponding the key to the work list, if needed.
  185.   void UpdateState(LatticeKey Key, LatticeVal LV);
  186.  
  187.   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  188.   /// work list if it is not already executable.
  189.   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
  190.  
  191.   /// getFeasibleSuccessors - Return a vector of booleans to indicate which
  192.   /// successors are reachable from a given terminator instruction.
  193.   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
  194.                              bool AggressiveUndef);
  195.  
  196.   void visitInst(Instruction &I);
  197.   void visitPHINode(PHINode &I);
  198.   void visitTerminator(Instruction &TI);
  199. };
  200.  
  201. //===----------------------------------------------------------------------===//
  202. //                  AbstractLatticeFunction Implementation
  203. //===----------------------------------------------------------------------===//
  204.  
  205. template <class LatticeKey, class LatticeVal>
  206. void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
  207.     LatticeVal V, raw_ostream &OS) {
  208.   if (V == UndefVal)
  209.     OS << "undefined";
  210.   else if (V == OverdefinedVal)
  211.     OS << "overdefined";
  212.   else if (V == UntrackedVal)
  213.     OS << "untracked";
  214.   else
  215.     OS << "unknown lattice value";
  216. }
  217.  
  218. template <class LatticeKey, class LatticeVal>
  219. void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
  220.     LatticeKey Key, raw_ostream &OS) {
  221.   OS << "unknown lattice key";
  222. }
  223.  
  224. //===----------------------------------------------------------------------===//
  225. //                          SparseSolver Implementation
  226. //===----------------------------------------------------------------------===//
  227.  
  228. template <class LatticeKey, class LatticeVal, class KeyInfo>
  229. LatticeVal
  230. SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
  231.   auto I = ValueState.find(Key);
  232.   if (I != ValueState.end())
  233.     return I->second; // Common case, in the map
  234.  
  235.   if (LatticeFunc->IsUntrackedValue(Key))
  236.     return LatticeFunc->getUntrackedVal();
  237.   LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
  238.  
  239.   // If this value is untracked, don't add it to the map.
  240.   if (LV == LatticeFunc->getUntrackedVal())
  241.     return LV;
  242.   return ValueState[Key] = std::move(LV);
  243. }
  244.  
  245. template <class LatticeKey, class LatticeVal, class KeyInfo>
  246. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
  247.                                                                 LatticeVal LV) {
  248.   auto I = ValueState.find(Key);
  249.   if (I != ValueState.end() && I->second == LV)
  250.     return; // No change.
  251.  
  252.   // Update the state of the given LatticeKey and add its corresponding LLVM
  253.   // value to the work list.
  254.   ValueState[Key] = std::move(LV);
  255.   if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
  256.     ValueWorkList.push_back(V);
  257. }
  258.  
  259. template <class LatticeKey, class LatticeVal, class KeyInfo>
  260. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
  261.     BasicBlock *BB) {
  262.   if (!BBExecutable.insert(BB).second)
  263.     return;
  264.   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
  265.   BBWorkList.push_back(BB); // Add the block to the work list!
  266. }
  267.  
  268. template <class LatticeKey, class LatticeVal, class KeyInfo>
  269. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
  270.     BasicBlock *Source, BasicBlock *Dest) {
  271.   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
  272.     return; // This edge is already known to be executable!
  273.  
  274.   LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
  275.                     << " -> " << Dest->getName() << "\n");
  276.  
  277.   if (BBExecutable.count(Dest)) {
  278.     // The destination is already executable, but we just made an edge
  279.     // feasible that wasn't before.  Revisit the PHI nodes in the block
  280.     // because they have potentially new operands.
  281.     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
  282.       visitPHINode(*cast<PHINode>(I));
  283.   } else {
  284.     MarkBlockExecutable(Dest);
  285.   }
  286. }
  287.  
  288. template <class LatticeKey, class LatticeVal, class KeyInfo>
  289. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
  290.     Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
  291.   Succs.resize(TI.getNumSuccessors());
  292.   if (TI.getNumSuccessors() == 0)
  293.     return;
  294.  
  295.   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
  296.     if (BI->isUnconditional()) {
  297.       Succs[0] = true;
  298.       return;
  299.     }
  300.  
  301.     LatticeVal BCValue;
  302.     if (AggressiveUndef)
  303.       BCValue =
  304.           getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
  305.     else
  306.       BCValue = getExistingValueState(
  307.           KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
  308.  
  309.     if (BCValue == LatticeFunc->getOverdefinedVal() ||
  310.         BCValue == LatticeFunc->getUntrackedVal()) {
  311.       // Overdefined condition variables can branch either way.
  312.       Succs[0] = Succs[1] = true;
  313.       return;
  314.     }
  315.  
  316.     // If undefined, neither is feasible yet.
  317.     if (BCValue == LatticeFunc->getUndefVal())
  318.       return;
  319.  
  320.     Constant *C =
  321.         dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
  322.             std::move(BCValue), BI->getCondition()->getType()));
  323.     if (!C || !isa<ConstantInt>(C)) {
  324.       // Non-constant values can go either way.
  325.       Succs[0] = Succs[1] = true;
  326.       return;
  327.     }
  328.  
  329.     // Constant condition variables mean the branch can only go a single way
  330.     Succs[C->isNullValue()] = true;
  331.     return;
  332.   }
  333.  
  334.   if (!isa<SwitchInst>(TI)) {
  335.     // Unknown termintor, assume all successors are feasible.
  336.     Succs.assign(Succs.size(), true);
  337.     return;
  338.   }
  339.  
  340.   SwitchInst &SI = cast<SwitchInst>(TI);
  341.   LatticeVal SCValue;
  342.   if (AggressiveUndef)
  343.     SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
  344.   else
  345.     SCValue = getExistingValueState(
  346.         KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
  347.  
  348.   if (SCValue == LatticeFunc->getOverdefinedVal() ||
  349.       SCValue == LatticeFunc->getUntrackedVal()) {
  350.     // All destinations are executable!
  351.     Succs.assign(TI.getNumSuccessors(), true);
  352.     return;
  353.   }
  354.  
  355.   // If undefined, neither is feasible yet.
  356.   if (SCValue == LatticeFunc->getUndefVal())
  357.     return;
  358.  
  359.   Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
  360.       std::move(SCValue), SI.getCondition()->getType()));
  361.   if (!C || !isa<ConstantInt>(C)) {
  362.     // All destinations are executable!
  363.     Succs.assign(TI.getNumSuccessors(), true);
  364.     return;
  365.   }
  366.   SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
  367.   Succs[Case.getSuccessorIndex()] = true;
  368. }
  369.  
  370. template <class LatticeKey, class LatticeVal, class KeyInfo>
  371. bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
  372.     BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
  373.   SmallVector<bool, 16> SuccFeasible;
  374.   Instruction *TI = From->getTerminator();
  375.   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
  376.  
  377.   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
  378.     if (TI->getSuccessor(i) == To && SuccFeasible[i])
  379.       return true;
  380.  
  381.   return false;
  382. }
  383.  
  384. template <class LatticeKey, class LatticeVal, class KeyInfo>
  385. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
  386.     Instruction &TI) {
  387.   SmallVector<bool, 16> SuccFeasible;
  388.   getFeasibleSuccessors(TI, SuccFeasible, true);
  389.  
  390.   BasicBlock *BB = TI.getParent();
  391.  
  392.   // Mark all feasible successors executable...
  393.   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
  394.     if (SuccFeasible[i])
  395.       markEdgeExecutable(BB, TI.getSuccessor(i));
  396. }
  397.  
  398. template <class LatticeKey, class LatticeVal, class KeyInfo>
  399. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
  400.   // The lattice function may store more information on a PHINode than could be
  401.   // computed from its incoming values.  For example, SSI form stores its sigma
  402.   // functions as PHINodes with a single incoming value.
  403.   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
  404.     DenseMap<LatticeKey, LatticeVal> ChangedValues;
  405.     LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
  406.     for (auto &ChangedValue : ChangedValues)
  407.       if (ChangedValue.second != LatticeFunc->getUntrackedVal())
  408.         UpdateState(std::move(ChangedValue.first),
  409.                     std::move(ChangedValue.second));
  410.     return;
  411.   }
  412.  
  413.   LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
  414.   LatticeVal PNIV = getValueState(Key);
  415.   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
  416.  
  417.   // If this value is already overdefined (common) just return.
  418.   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
  419.     return; // Quick exit
  420.  
  421.   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
  422.   // and slow us down a lot.  Just mark them overdefined.
  423.   if (PN.getNumIncomingValues() > 64) {
  424.     UpdateState(Key, Overdefined);
  425.     return;
  426.   }
  427.  
  428.   // Look at all of the executable operands of the PHI node.  If any of them
  429.   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
  430.   // transfer function to give us the merge of the incoming values.
  431.   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  432.     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
  433.     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
  434.       continue;
  435.  
  436.     // Merge in this value.
  437.     LatticeVal OpVal =
  438.         getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
  439.     if (OpVal != PNIV)
  440.       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
  441.  
  442.     if (PNIV == Overdefined)
  443.       break; // Rest of input values don't matter.
  444.   }
  445.  
  446.   // Update the PHI with the compute value, which is the merge of the inputs.
  447.   UpdateState(Key, PNIV);
  448. }
  449.  
  450. template <class LatticeKey, class LatticeVal, class KeyInfo>
  451. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
  452.   // PHIs are handled by the propagation logic, they are never passed into the
  453.   // transfer functions.
  454.   if (PHINode *PN = dyn_cast<PHINode>(&I))
  455.     return visitPHINode(*PN);
  456.  
  457.   // Otherwise, ask the transfer function what the result is.  If this is
  458.   // something that we care about, remember it.
  459.   DenseMap<LatticeKey, LatticeVal> ChangedValues;
  460.   LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
  461.   for (auto &ChangedValue : ChangedValues)
  462.     if (ChangedValue.second != LatticeFunc->getUntrackedVal())
  463.       UpdateState(ChangedValue.first, ChangedValue.second);
  464.  
  465.   if (I.isTerminator())
  466.     visitTerminator(I);
  467. }
  468.  
  469. template <class LatticeKey, class LatticeVal, class KeyInfo>
  470. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
  471.   // Process the work lists until they are empty!
  472.   while (!BBWorkList.empty() || !ValueWorkList.empty()) {
  473.     // Process the value work list.
  474.     while (!ValueWorkList.empty()) {
  475.       Value *V = ValueWorkList.pop_back_val();
  476.  
  477.       LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
  478.  
  479.       // "V" got into the work list because it made a transition. See if any
  480.       // users are both live and in need of updating.
  481.       for (User *U : V->users())
  482.         if (Instruction *Inst = dyn_cast<Instruction>(U))
  483.           if (BBExecutable.count(Inst->getParent())) // Inst is executable?
  484.             visitInst(*Inst);
  485.     }
  486.  
  487.     // Process the basic block work list.
  488.     while (!BBWorkList.empty()) {
  489.       BasicBlock *BB = BBWorkList.pop_back_val();
  490.  
  491.       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
  492.  
  493.       // Notify all instructions in this basic block that they are newly
  494.       // executable.
  495.       for (Instruction &I : *BB)
  496.         visitInst(I);
  497.     }
  498.   }
  499. }
  500.  
  501. template <class LatticeKey, class LatticeVal, class KeyInfo>
  502. void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
  503.     raw_ostream &OS) const {
  504.   if (ValueState.empty())
  505.     return;
  506.  
  507.   LatticeKey Key;
  508.   LatticeVal LV;
  509.  
  510.   OS << "ValueState:\n";
  511.   for (auto &Entry : ValueState) {
  512.     std::tie(Key, LV) = Entry;
  513.     if (LV == LatticeFunc->getUntrackedVal())
  514.       continue;
  515.     OS << "\t";
  516.     LatticeFunc->PrintLatticeVal(LV, OS);
  517.     OS << ": ";
  518.     LatticeFunc->PrintLatticeKey(Key, OS);
  519.     OS << "\n";
  520.   }
  521. }
  522. } // end namespace llvm
  523.  
  524. #undef DEBUG_TYPE
  525.  
  526. #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
  527.