//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the classes used to represent and build scalar expressions.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
 
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Analysis/ScalarEvolution.h"
 
#include "llvm/IR/Constants.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <cstddef>
 
 
 
namespace llvm {
 
 
 
class APInt;
 
class Constant;
 
class ConstantInt;
 
class ConstantRange;
 
class Loop;
 
class Type;
 
class Value;
 
 
 
enum SCEVTypes : unsigned short {
 
  // These should be ordered in terms of increasing complexity to make the
 
  // folders simpler.
 
  scConstant,
 
  scTruncate,
 
  scZeroExtend,
 
  scSignExtend,
 
  scAddExpr,
 
  scMulExpr,
 
  scUDivExpr,
 
  scAddRecExpr,
 
  scUMaxExpr,
 
  scSMaxExpr,
 
  scUMinExpr,
 
  scSMinExpr,
 
  scSequentialUMinExpr,
 
  scPtrToInt,
 
  scUnknown,
 
  scCouldNotCompute
 
};
 
 
 
/// This class represents a constant integer value.
 
class SCEVConstant : public SCEV {
 
  friend class ScalarEvolution;
 
 
 
  ConstantInt *V;
 
 
 
  SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v)
 
      : SCEV(ID, scConstant, 1), V(v) {}
 
 
 
public:
 
  ConstantInt *getValue() const { return V; }
 
  const APInt &getAPInt() const { return getValue()->getValue(); }
 
 
 
  Type *getType() const { return V->getType(); }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; }
 
};
 
 
 
inline unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) {
 
  APInt Size(16, 1);
 
  for (const auto *Arg : Args)
 
    Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize()));
 
  return (unsigned short)Size.getZExtValue();
 
}
 
 
 
/// This is the base class for unary cast operator classes.
 
class SCEVCastExpr : public SCEV {
 
protected:
 
  const SCEV *Op;
 
  Type *Ty;
 
 
 
  SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op,
 
               Type *ty);
 
 
 
public:
 
  const SCEV *getOperand() const { return Op; }
 
  const SCEV *getOperand(unsigned i) const {
 
    assert(i == 0 && "Operand index out of range!");
 
    return Op;
 
  }
 
  ArrayRef<const SCEV *> operands() const { return Op; }
 
  size_t getNumOperands() const { return 1; }
 
  Type *getType() const { return Ty; }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scPtrToInt || S->getSCEVType() == scTruncate ||
 
           S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend;
 
  }
 
};
 
 
 
/// This class represents a cast from a pointer to a pointer-sized integer
 
/// value.
 
class SCEVPtrToIntExpr : public SCEVCastExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, Type *ITy);
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scPtrToInt; }
 
};
 
 
 
/// This is the base class for unary integral cast operator classes.
 
class SCEVIntegralCastExpr : public SCEVCastExpr {
 
protected:
 
  SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
 
                       const SCEV *op, Type *ty);
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend ||
 
           S->getSCEVType() == scSignExtend;
 
  }
 
};
 
 
 
/// This class represents a truncation of an integer value to a
 
/// smaller integer value.
 
class SCEVTruncateExpr : public SCEVIntegralCastExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty);
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; }
 
};
 
 
 
/// This class represents a zero extension of a small integer value
 
/// to a larger integer value.
 
class SCEVZeroExtendExpr : public SCEVIntegralCastExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty);
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scZeroExtend;
 
  }
 
};
 
 
 
/// This class represents a sign extension of a small integer value
 
/// to a larger integer value.
 
class SCEVSignExtendExpr : public SCEVIntegralCastExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty);
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scSignExtend;
 
  }
 
};
 
 
 
/// This node is a base class providing common functionality for
 
/// n'ary operators.
 
class SCEVNAryExpr : public SCEV {
 
protected:
 
  // Since SCEVs are immutable, ScalarEvolution allocates operand
 
  // arrays with its SCEVAllocator, so this class just needs a simple
 
  // pointer rather than a more elaborate vector-like data structure.
 
  // This also avoids the need for a non-trivial destructor.
 
  const SCEV *const *Operands;
 
  size_t NumOperands;
 
 
 
  SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
 
               const SCEV *const *O, size_t N)
 
      : SCEV(ID, T, computeExpressionSize(ArrayRef(O, N))), Operands(O),
 
        NumOperands(N) {}
 
 
 
public:
 
  size_t getNumOperands() const { return NumOperands; }
 
 
 
  const SCEV *getOperand(unsigned i) const {
 
    assert(i < NumOperands && "Operand index out of range!");
 
    return Operands[i];
 
  }
 
 
 
  ArrayRef<const SCEV *> operands() const {
 
    return ArrayRef(Operands, NumOperands);
 
  }
 
 
 
  NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
 
    return (NoWrapFlags)(SubclassData & Mask);
 
  }
 
 
 
  bool hasNoUnsignedWrap() const {
 
    return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
 
  }
 
 
 
  bool hasNoSignedWrap() const {
 
    return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
 
  }
 
 
 
  bool hasNoSelfWrap() const { return getNoWrapFlags(FlagNW) != FlagAnyWrap; }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
 
           S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
 
           S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr ||
 
           S->getSCEVType() == scSequentialUMinExpr ||
 
           S->getSCEVType() == scAddRecExpr;
 
  }
 
};
 
 
 
/// This node is the base class for n'ary commutative operators.
 
class SCEVCommutativeExpr : public SCEVNAryExpr {
 
protected:
 
  SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
 
                      const SCEV *const *O, size_t N)
 
      : SCEVNAryExpr(ID, T, O, N) {}
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
 
           S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
 
           S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr;
 
  }
 
 
 
  /// Set flags for a non-recurrence without clearing previously set flags.
 
  void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; }
 
};
 
 
 
/// This node represents an addition of some number of SCEVs.
 
class SCEVAddExpr : public SCEVCommutativeExpr {
 
  friend class ScalarEvolution;
 
 
 
  Type *Ty;
 
 
 
  SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
 
      : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
 
    auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) {
 
      return Op->getType()->isPointerTy();
 
    });
 
    if (FirstPointerTypedOp != operands().end())
 
      Ty = (*FirstPointerTypedOp)->getType();
 
    else
 
      Ty = getOperand(0)->getType();
 
  }
 
 
 
public:
 
  Type *getType() const { return Ty; }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; }
 
};
 
 
 
/// This node represents multiplication of some number of SCEVs.
 
class SCEVMulExpr : public SCEVCommutativeExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
 
      : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}
 
 
 
public:
 
  Type *getType() const { return getOperand(0)->getType(); }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; }
 
};
 
 
 
/// This class represents a binary unsigned division operation.
 
class SCEVUDivExpr : public SCEV {
 
  friend class ScalarEvolution;
 
 
 
  std::array<const SCEV *, 2> Operands;
 
 
 
  SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
 
      : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})) {
 
    Operands[0] = lhs;
 
    Operands[1] = rhs;
 
  }
 
 
 
public:
 
  const SCEV *getLHS() const { return Operands[0]; }
 
  const SCEV *getRHS() const { return Operands[1]; }
 
  size_t getNumOperands() const { return 2; }
 
  const SCEV *getOperand(unsigned i) const {
 
    assert((i == 0 || i == 1) && "Operand index out of range!");
 
    return i == 0 ? getLHS() : getRHS();
 
  }
 
 
 
  ArrayRef<const SCEV *> operands() const { return Operands; }
 
 
 
  Type *getType() const {
 
    // In most cases the types of LHS and RHS will be the same, but in some
 
    // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
 
    // depend on the type for correctness, but handling types carefully can
 
    // avoid extra casts in the SCEVExpander. The LHS is more likely to be
 
    // a pointer type than the RHS, so use the RHS' type here.
 
    return getRHS()->getType();
 
  }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; }
 
};
 
 
 
/// This node represents a polynomial recurrence on the trip count
 
/// of the specified loop.  This is the primary focus of the
 
/// ScalarEvolution framework; all the other SCEV subclasses are
 
/// mostly just supporting infrastructure to allow SCEVAddRecExpr
 
/// expressions to be created and analyzed.
 
///
 
/// All operands of an AddRec are required to be loop invariant.
 
///
 
class SCEVAddRecExpr : public SCEVNAryExpr {
 
  friend class ScalarEvolution;
 
 
 
  const Loop *L;
 
 
 
  SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N,
 
                 const Loop *l)
 
      : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
 
 
 
public:
 
  Type *getType() const { return getStart()->getType(); }
 
  const SCEV *getStart() const { return Operands[0]; }
 
  const Loop *getLoop() const { return L; }
 
 
 
  /// Constructs and returns the recurrence indicating how much this
 
  /// expression steps by.  If this is a polynomial of degree N, it
 
  /// returns a chrec of degree N-1.  We cannot determine whether
 
  /// the step recurrence has self-wraparound.
 
  const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
 
    if (isAffine())
 
      return getOperand(1);
 
    return SE.getAddRecExpr(
 
        SmallVector<const SCEV *, 3>(operands().drop_front()), getLoop(),
 
        FlagAnyWrap);
 
  }
 
 
 
  /// Return true if this represents an expression A + B*x where A
 
  /// and B are loop invariant values.
 
  bool isAffine() const {
 
    // We know that the start value is invariant.  This expression is thus
 
    // affine iff the step is also invariant.
 
    return getNumOperands() == 2;
 
  }
 
 
 
  /// Return true if this represents an expression A + B*x + C*x^2
 
  /// where A, B and C are loop invariant values.  This corresponds
 
  /// to an addrec of the form {L,+,M,+,N}
 
  bool isQuadratic() const { return getNumOperands() == 3; }
 
 
 
  /// Set flags for a recurrence without clearing any previously set flags.
 
  /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
 
  /// to make it easier to propagate flags.
 
  void setNoWrapFlags(NoWrapFlags Flags) {
 
    if (Flags & (FlagNUW | FlagNSW))
 
      Flags = ScalarEvolution::setFlags(Flags, FlagNW);
 
    SubclassData |= Flags;
 
  }
 
 
 
  /// Return the value of this chain of recurrences at the specified
 
  /// iteration number.
 
  const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
 
 
 
  /// Return the value of this chain of recurrences at the specified iteration
 
  /// number. Takes an explicit list of operands to represent an AddRec.
 
  static const SCEV *evaluateAtIteration(ArrayRef<const SCEV *> Operands,
 
                                         const SCEV *It, ScalarEvolution &SE);
 
 
 
  /// Return the number of iterations of this loop that produce
 
  /// values in the specified constant range.  Another way of
 
  /// looking at this is that it returns the first iteration number
 
  /// where the value is not in the condition, thus computing the
 
  /// exit count.  If the iteration count can't be computed, an
 
  /// instance of SCEVCouldNotCompute is returned.
 
  const SCEV *getNumIterationsInRange(const ConstantRange &Range,
 
                                      ScalarEvolution &SE) const;
 
 
 
  /// Return an expression representing the value of this expression
 
  /// one iteration of the loop ahead.
 
  const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const;
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scAddRecExpr;
 
  }
 
};
 
 
 
/// This node is the base class min/max selections.
 
class SCEVMinMaxExpr : public SCEVCommutativeExpr {
 
  friend class ScalarEvolution;
 
 
 
  static bool isMinMaxType(enum SCEVTypes T) {
 
    return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr ||
 
           T == scUMinExpr;
 
  }
 
 
 
protected:
 
  /// Note: Constructing subclasses via this constructor is allowed
 
  SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
 
                 const SCEV *const *O, size_t N)
 
      : SCEVCommutativeExpr(ID, T, O, N) {
 
    assert(isMinMaxType(T));
 
    // Min and max never overflow
 
    setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
 
  }
 
 
 
public:
 
  Type *getType() const { return getOperand(0)->getType(); }
 
 
 
  static bool classof(const SCEV *S) { return isMinMaxType(S->getSCEVType()); }
 
 
 
  static enum SCEVTypes negate(enum SCEVTypes T) {
 
    switch (T) {
 
    case scSMaxExpr:
 
      return scSMinExpr;
 
    case scSMinExpr:
 
      return scSMaxExpr;
 
    case scUMaxExpr:
 
      return scUMinExpr;
 
    case scUMinExpr:
 
      return scUMaxExpr;
 
    default:
 
      llvm_unreachable("Not a min or max SCEV type!");
 
    }
 
  }
 
};
 
 
 
/// This class represents a signed maximum selection.
 
class SCEVSMaxExpr : public SCEVMinMaxExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
 
      : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {}
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; }
 
};
 
 
 
/// This class represents an unsigned maximum selection.
 
class SCEVUMaxExpr : public SCEVMinMaxExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
 
      : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {}
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; }
 
};
 
 
 
/// This class represents a signed minimum selection.
 
class SCEVSMinExpr : public SCEVMinMaxExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
 
      : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {}
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scSMinExpr; }
 
};
 
 
 
/// This class represents an unsigned minimum selection.
 
class SCEVUMinExpr : public SCEVMinMaxExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
 
      : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {}
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scUMinExpr; }
 
};
 
 
 
/// This node is the base class for sequential/in-order min/max selections.
 
/// Note that their fundamental difference from SCEVMinMaxExpr's is that they
 
/// are early-returning upon reaching saturation point.
 
/// I.e. given `0 umin_seq poison`, the result will be `0`,
 
/// while the result of `0 umin poison` is `poison`.
 
class SCEVSequentialMinMaxExpr : public SCEVNAryExpr {
 
  friend class ScalarEvolution;
 
 
 
  static bool isSequentialMinMaxType(enum SCEVTypes T) {
 
    return T == scSequentialUMinExpr;
 
  }
 
 
 
  /// Set flags for a non-recurrence without clearing previously set flags.
 
  void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; }
 
 
 
protected:
 
  /// Note: Constructing subclasses via this constructor is allowed
 
  SCEVSequentialMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
 
                           const SCEV *const *O, size_t N)
 
      : SCEVNAryExpr(ID, T, O, N) {
 
    assert(isSequentialMinMaxType(T));
 
    // Min and max never overflow
 
    setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
 
  }
 
 
 
public:
 
  Type *getType() const { return getOperand(0)->getType(); }
 
 
 
  static SCEVTypes getEquivalentNonSequentialSCEVType(SCEVTypes Ty) {
 
    assert(isSequentialMinMaxType(Ty));
 
    switch (Ty) {
 
    case scSequentialUMinExpr:
 
      return scUMinExpr;
 
    default:
 
      llvm_unreachable("Not a sequential min/max type.");
 
    }
 
  }
 
 
 
  SCEVTypes getEquivalentNonSequentialSCEVType() const {
 
    return getEquivalentNonSequentialSCEVType(getSCEVType());
 
  }
 
 
 
  static bool classof(const SCEV *S) {
 
    return isSequentialMinMaxType(S->getSCEVType());
 
  }
 
};
 
 
 
/// This class represents a sequential/in-order unsigned minimum selection.
 
class SCEVSequentialUMinExpr : public SCEVSequentialMinMaxExpr {
 
  friend class ScalarEvolution;
 
 
 
  SCEVSequentialUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O,
 
                         size_t N)
 
      : SCEVSequentialMinMaxExpr(ID, scSequentialUMinExpr, O, N) {}
 
 
 
public:
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) {
 
    return S->getSCEVType() == scSequentialUMinExpr;
 
  }
 
};
 
 
 
/// This means that we are dealing with an entirely unknown SCEV
 
/// value, and only represent it as its LLVM Value.  This is the
 
/// "bottom" value for the analysis.
 
class SCEVUnknown final : public SCEV, private CallbackVH {
 
  friend class ScalarEvolution;
 
 
 
  /// The parent ScalarEvolution value. This is used to update the
 
  /// parent's maps when the value associated with a SCEVUnknown is
 
  /// deleted or RAUW'd.
 
  ScalarEvolution *SE;
 
 
 
  /// The next pointer in the linked list of all SCEVUnknown
 
  /// instances owned by a ScalarEvolution.
 
  SCEVUnknown *Next;
 
 
 
  SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se,
 
              SCEVUnknown *next)
 
      : SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {}
 
 
 
  // Implement CallbackVH.
 
  void deleted() override;
 
  void allUsesReplacedWith(Value *New) override;
 
 
 
public:
 
  Value *getValue() const { return getValPtr(); }
 
 
 
  /// @{
 
  /// Test whether this is a special constant representing a type
 
  /// size, alignment, or field offset in a target-independent
 
  /// manner, and hasn't happened to have been folded with other
 
  /// operations into something unrecognizable. This is mainly only
 
  /// useful for pretty-printing and other situations where it isn't
 
  /// absolutely required for these to succeed.
 
  bool isSizeOf(Type *&AllocTy) const;
 
  bool isAlignOf(Type *&AllocTy) const;
 
  bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
 
  /// @}
 
 
 
  Type *getType() const { return getValPtr()->getType(); }
 
 
 
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 
  static bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; }
 
};
 
 
 
/// This class defines a simple visitor class that may be used for
 
/// various SCEV analysis purposes.
 
template <typename SC, typename RetVal = void> struct SCEVVisitor {
 
  RetVal visit(const SCEV *S) {
 
    switch (S->getSCEVType()) {
 
    case scConstant:
 
      return ((SC *)this)->visitConstant((const SCEVConstant *)S);
 
    case scPtrToInt:
 
      return ((SC *)this)->visitPtrToIntExpr((const SCEVPtrToIntExpr *)S);
 
    case scTruncate:
 
      return ((SC *)this)->visitTruncateExpr((const SCEVTruncateExpr *)S);
 
    case scZeroExtend:
 
      return ((SC *)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr *)S);
 
    case scSignExtend:
 
      return ((SC *)this)->visitSignExtendExpr((const SCEVSignExtendExpr *)S);
 
    case scAddExpr:
 
      return ((SC *)this)->visitAddExpr((const SCEVAddExpr *)S);
 
    case scMulExpr:
 
      return ((SC *)this)->visitMulExpr((const SCEVMulExpr *)S);
 
    case scUDivExpr:
 
      return ((SC *)this)->visitUDivExpr((const SCEVUDivExpr *)S);
 
    case scAddRecExpr:
 
      return ((SC *)this)->visitAddRecExpr((const SCEVAddRecExpr *)S);
 
    case scSMaxExpr:
 
      return ((SC *)this)->visitSMaxExpr((const SCEVSMaxExpr *)S);
 
    case scUMaxExpr:
 
      return ((SC *)this)->visitUMaxExpr((const SCEVUMaxExpr *)S);
 
    case scSMinExpr:
 
      return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S);
 
    case scUMinExpr:
 
      return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S);
 
    case scSequentialUMinExpr:
 
      return ((SC *)this)
 
          ->visitSequentialUMinExpr((const SCEVSequentialUMinExpr *)S);
 
    case scUnknown:
 
      return ((SC *)this)->visitUnknown((const SCEVUnknown *)S);
 
    case scCouldNotCompute:
 
      return ((SC *)this)->visitCouldNotCompute((const SCEVCouldNotCompute *)S);
 
    }
 
    llvm_unreachable("Unknown SCEV kind!");
 
  }
 
 
 
  RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
 
    llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
 
  }
 
};
 
 
 
/// Visit all nodes in the expression tree using worklist traversal.
 
///
 
/// Visitor implements:
 
///   // return true to follow this node.
 
///   bool follow(const SCEV *S);
 
///   // return true to terminate the search.
 
///   bool isDone();
 
template <typename SV> class SCEVTraversal {
 
  SV &Visitor;
 
  SmallVector<const SCEV *, 8> Worklist;
 
  SmallPtrSet<const SCEV *, 8> Visited;
 
 
 
  void push(const SCEV *S) {
 
    if (Visited.insert(S).second && Visitor.follow(S))
 
      Worklist.push_back(S);
 
  }
 
 
 
public:
 
  SCEVTraversal(SV &V) : Visitor(V) {}
 
 
 
  void visitAll(const SCEV *Root) {
 
    push(Root);
 
    while (!Worklist.empty() && !Visitor.isDone()) {
 
      const SCEV *S = Worklist.pop_back_val();
 
 
 
      switch (S->getSCEVType()) {
 
      case scConstant:
 
      case scUnknown:
 
        continue;
 
      case scPtrToInt:
 
      case scTruncate:
 
      case scZeroExtend:
 
      case scSignExtend:
 
      case scAddExpr:
 
      case scMulExpr:
 
      case scUDivExpr:
 
      case scSMaxExpr:
 
      case scUMaxExpr:
 
      case scSMinExpr:
 
      case scUMinExpr:
 
      case scSequentialUMinExpr:
 
      case scAddRecExpr:
 
        for (const auto *Op : S->operands()) {
 
          push(Op);
 
          if (Visitor.isDone())
 
            break;
 
        }
 
        continue;
 
      case scCouldNotCompute:
 
        llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 
      }
 
      llvm_unreachable("Unknown SCEV kind!");
 
    }
 
  }
 
};
 
 
 
/// Use SCEVTraversal to visit all nodes in the given expression tree.
 
template <typename SV> void visitAll(const SCEV *Root, SV &Visitor) {
 
  SCEVTraversal<SV> T(Visitor);
 
  T.visitAll(Root);
 
}
 
 
 
/// Return true if any node in \p Root satisfies the predicate \p Pred.
 
template <typename PredTy>
 
bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
 
  struct FindClosure {
 
    bool Found = false;
 
    PredTy Pred;
 
 
 
    FindClosure(PredTy Pred) : Pred(Pred) {}
 
 
 
    bool follow(const SCEV *S) {
 
      if (!Pred(S))
 
        return true;
 
 
 
      Found = true;
 
      return false;
 
    }
 
 
 
    bool isDone() const { return Found; }
 
  };
 
 
 
  FindClosure FC(Pred);
 
  visitAll(Root, FC);
 
  return FC.Found;
 
}
 
 
 
/// This visitor recursively visits a SCEV expression and re-writes it.
 
/// The result from each visit is cached, so it will return the same
 
/// SCEV for the same input.
 
template <typename SC>
 
class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
 
protected:
 
  ScalarEvolution &SE;
 
  // Memoize the result of each visit so that we only compute once for
 
  // the same input SCEV. This is to avoid redundant computations when
 
  // a SCEV is referenced by multiple SCEVs. Without memoization, this
 
  // visit algorithm would have exponential time complexity in the worst
 
  // case, causing the compiler to hang on certain tests.
 
  DenseMap<const SCEV *, const SCEV *> RewriteResults;
 
 
 
public:
 
  SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
 
 
 
  const SCEV *visit(const SCEV *S) {
 
    auto It = RewriteResults.find(S);
 
    if (It != RewriteResults.end())
 
      return It->second;
 
    auto *Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
 
    auto Result = RewriteResults.try_emplace(S, Visited);
 
    assert(Result.second && "Should insert a new entry");
 
    return Result.first->second;
 
  }
 
 
 
  const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; }
 
 
 
  const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) {
 
    const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
 
    return Operand == Expr->getOperand()
 
               ? Expr
 
               : SE.getPtrToIntExpr(Operand, Expr->getType());
 
  }
 
 
 
  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
 
    const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
 
    return Operand == Expr->getOperand()
 
               ? Expr
 
               : SE.getTruncateExpr(Operand, Expr->getType());
 
  }
 
 
 
  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
 
    const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
 
    return Operand == Expr->getOperand()
 
               ? Expr
 
               : SE.getZeroExtendExpr(Operand, Expr->getType());
 
  }
 
 
 
  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
 
    const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
 
    return Operand == Expr->getOperand()
 
               ? Expr
 
               : SE.getSignExtendExpr(Operand, Expr->getType());
 
  }
 
 
 
  const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getAddExpr(Operands);
 
  }
 
 
 
  const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getMulExpr(Operands);
 
  }
 
 
 
  const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
 
    auto *LHS = ((SC *)this)->visit(Expr->getLHS());
 
    auto *RHS = ((SC *)this)->visit(Expr->getRHS());
 
    bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
 
    return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
 
  }
 
 
 
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr
 
                    : SE.getAddRecExpr(Operands, Expr->getLoop(),
 
                                       Expr->getNoWrapFlags());
 
  }
 
 
 
  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getSMaxExpr(Operands);
 
  }
 
 
 
  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getUMaxExpr(Operands);
 
  }
 
 
 
  const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getSMinExpr(Operands);
 
  }
 
 
 
  const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getUMinExpr(Operands);
 
  }
 
 
 
  const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    bool Changed = false;
 
    for (const auto *Op : Expr->operands()) {
 
      Operands.push_back(((SC *)this)->visit(Op));
 
      Changed |= Op != Operands.back();
 
    }
 
    return !Changed ? Expr : SE.getUMinExpr(Operands, /*Sequential=*/true);
 
  }
 
 
 
  const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; }
 
 
 
  const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
 
    return Expr;
 
  }
 
};
 
 
 
using ValueToValueMap = DenseMap<const Value *, Value *>;
 
using ValueToSCEVMapTy = DenseMap<const Value *, const SCEV *>;
 
 
 
/// The SCEVParameterRewriter takes a scalar evolution expression and updates
 
/// the SCEVUnknown components following the Map (Value -> SCEV).
 
class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
 
public:
 
  static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
 
                             ValueToSCEVMapTy &Map) {
 
    SCEVParameterRewriter Rewriter(SE, Map);
 
    return Rewriter.visit(Scev);
 
  }
 
 
 
  SCEVParameterRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
 
      : SCEVRewriteVisitor(SE), Map(M) {}
 
 
 
  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 
    auto I = Map.find(Expr->getValue());
 
    if (I == Map.end())
 
      return Expr;
 
    return I->second;
 
  }
 
 
 
private:
 
  ValueToSCEVMapTy ⤅
 
};
 
 
 
using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;
 
 
 
/// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
 
/// the Map (Loop -> SCEV) to all AddRecExprs.
 
class SCEVLoopAddRecRewriter
 
    : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
 
public:
 
  SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
 
      : SCEVRewriteVisitor(SE), Map(M) {}
 
 
 
  static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
 
                             ScalarEvolution &SE) {
 
    SCEVLoopAddRecRewriter Rewriter(SE, Map);
 
    return Rewriter.visit(Scev);
 
  }
 
 
 
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
 
    SmallVector<const SCEV *, 2> Operands;
 
    for (const SCEV *Op : Expr->operands())
 
      Operands.push_back(visit(Op));
 
 
 
    const Loop *L = Expr->getLoop();
 
    if (0 == Map.count(L))
 
      return SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
 
 
 
    return SCEVAddRecExpr::evaluateAtIteration(Operands, Map[L], SE);
 
  }
 
 
 
private:
 
  LoopToScevMapT ⤅
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H