//===- RegionInfoImpl.h - SESE region detection analysis --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
// Detects single entry single exit regions in the control flow graph.
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_REGIONINFOIMPL_H
 
#define LLVM_ANALYSIS_REGIONINFOIMPL_H
 
 
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/PostOrderIterator.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Analysis/LoopInfo.h"
 
#include "llvm/Analysis/PostDominators.h"
 
#include "llvm/Analysis/RegionInfo.h"
 
#include "llvm/Analysis/RegionIterator.h"
 
#include "llvm/Config/llvm-config.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <iterator>
 
#include <memory>
 
#include <set>
 
#include <string>
 
#include <type_traits>
 
#include <vector>
 
 
 
#define DEBUG_TYPE "region"
 
 
 
namespace llvm {
 
class raw_ostream;
 
 
 
//===----------------------------------------------------------------------===//
 
/// RegionBase Implementation
 
template <class Tr>
 
RegionBase<Tr>::RegionBase(BlockT *Entry, BlockT *Exit,
 
                           typename Tr::RegionInfoT *RInfo, DomTreeT *dt,
 
                           RegionT *Parent)
 
    : RegionNodeBase<Tr>(Parent, Entry, 1), RI(RInfo), DT(dt), exit(Exit) {}
 
 
 
template <class Tr>
 
RegionBase<Tr>::~RegionBase() {
 
  // Only clean the cache for this Region. Caches of child Regions will be
 
  // cleaned when the child Regions are deleted.
 
  BBNodeMap.clear();
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::replaceEntry(BlockT *BB) {
 
  this->entry.setPointer(BB);
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::replaceExit(BlockT *BB) {
 
  assert(exit && "No exit to replace!");
 
  exit = BB;
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::replaceEntryRecursive(BlockT *NewEntry) {
 
  std::vector<RegionT *> RegionQueue;
 
  BlockT *OldEntry = getEntry();
 
 
 
  RegionQueue.push_back(static_cast<RegionT *>(this));
 
  while (!RegionQueue.empty()) {
 
    RegionT *R = RegionQueue.back();
 
    RegionQueue.pop_back();
 
 
 
    R->replaceEntry(NewEntry);
 
    for (std::unique_ptr<RegionT> &Child : *R) {
 
      if (Child->getEntry() == OldEntry)
 
        RegionQueue.push_back(Child.get());
 
    }
 
  }
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::replaceExitRecursive(BlockT *NewExit) {
 
  std::vector<RegionT *> RegionQueue;
 
  BlockT *OldExit = getExit();
 
 
 
  RegionQueue.push_back(static_cast<RegionT *>(this));
 
  while (!RegionQueue.empty()) {
 
    RegionT *R = RegionQueue.back();
 
    RegionQueue.pop_back();
 
 
 
    R->replaceExit(NewExit);
 
    for (std::unique_ptr<RegionT> &Child : *R) {
 
      if (Child->getExit() == OldExit)
 
        RegionQueue.push_back(Child.get());
 
    }
 
  }
 
}
 
 
 
template <class Tr>
 
bool RegionBase<Tr>::contains(const BlockT *B) const {
 
  BlockT *BB = const_cast<BlockT *>(B);
 
 
 
  if (!DT->getNode(BB))
 
    return false;
 
 
 
  BlockT *entry = getEntry(), *exit = getExit();
 
 
 
  // Toplevel region.
 
  if (!exit)
 
    return true;
 
 
 
  return (DT->dominates(entry, BB) &&
 
          !(DT->dominates(exit, BB) && DT->dominates(entry, exit)));
 
}
 
 
 
template <class Tr>
 
bool RegionBase<Tr>::contains(const LoopT *L) const {
 
  // BBs that are not part of any loop are element of the Loop
 
  // described by the NULL pointer. This loop is not part of any region,
 
  // except if the region describes the whole function.
 
  if (!L)
 
    return getExit() == nullptr;
 
 
 
  if (!contains(L->getHeader()))
 
    return false;
 
 
 
  SmallVector<BlockT *, 8> ExitingBlocks;
 
  L->getExitingBlocks(ExitingBlocks);
 
 
 
  for (BlockT *BB : ExitingBlocks) {
 
    if (!contains(BB))
 
      return false;
 
  }
 
 
 
  return true;
 
}
 
 
 
template <class Tr>
 
typename Tr::LoopT *RegionBase<Tr>::outermostLoopInRegion(LoopT *L) const {
 
  if (!contains(L))
 
    return nullptr;
 
 
 
  while (L && contains(L->getParentLoop())) {
 
    L = L->getParentLoop();
 
  }
 
 
 
  return L;
 
}
 
 
 
template <class Tr>
 
typename Tr::LoopT *RegionBase<Tr>::outermostLoopInRegion(LoopInfoT *LI,
 
                                                          BlockT *BB) const {
 
  assert(LI && BB && "LI and BB cannot be null!");
 
  LoopT *L = LI->getLoopFor(BB);
 
  return outermostLoopInRegion(L);
 
}
 
 
 
template <class Tr>
 
typename RegionBase<Tr>::BlockT *RegionBase<Tr>::getEnteringBlock() const {
 
  auto isEnteringBlock = [&](BlockT *Pred, bool AllowRepeats) -> BlockT * {
 
    assert(!AllowRepeats && "Unexpected parameter value.");
 
    return DT->getNode(Pred) && !contains(Pred) ? Pred : nullptr;
 
  };
 
  BlockT *entry = getEntry();
 
  return find_singleton<BlockT>(make_range(InvBlockTraits::child_begin(entry),
 
                                           InvBlockTraits::child_end(entry)),
 
                                isEnteringBlock);
 
}
 
 
 
template <class Tr>
 
bool RegionBase<Tr>::getExitingBlocks(
 
    SmallVectorImpl<BlockT *> &Exitings) const {
 
  bool CoverAll = true;
 
 
 
  if (!exit)
 
    return CoverAll;
 
 
 
  for (PredIterTy PI = InvBlockTraits::child_begin(exit),
 
                  PE = InvBlockTraits::child_end(exit);
 
       PI != PE; ++PI) {
 
    BlockT *Pred = *PI;
 
    if (contains(Pred)) {
 
      Exitings.push_back(Pred);
 
      continue;
 
    }
 
 
 
    CoverAll = false;
 
  }
 
 
 
  return CoverAll;
 
}
 
 
 
template <class Tr>
 
typename RegionBase<Tr>::BlockT *RegionBase<Tr>::getExitingBlock() const {
 
  BlockT *exit = getExit();
 
  if (!exit)
 
    return nullptr;
 
 
 
  auto isContained = [&](BlockT *Pred, bool AllowRepeats) -> BlockT * {
 
    assert(!AllowRepeats && "Unexpected parameter value.");
 
    return contains(Pred) ? Pred : nullptr;
 
  };
 
  return find_singleton<BlockT>(make_range(InvBlockTraits::child_begin(exit),
 
                                           InvBlockTraits::child_end(exit)),
 
                                isContained);
 
}
 
 
 
template <class Tr>
 
bool RegionBase<Tr>::isSimple() const {
 
  return !isTopLevelRegion() && getEnteringBlock() && getExitingBlock();
 
}
 
 
 
template <class Tr>
 
std::string RegionBase<Tr>::getNameStr() const {
 
  std::string exitName;
 
  std::string entryName;
 
 
 
  if (getEntry()->getName().empty()) {
 
    raw_string_ostream OS(entryName);
 
 
 
    getEntry()->printAsOperand(OS, false);
 
  } else
 
    entryName = std::string(getEntry()->getName());
 
 
 
  if (getExit()) {
 
    if (getExit()->getName().empty()) {
 
      raw_string_ostream OS(exitName);
 
 
 
      getExit()->printAsOperand(OS, false);
 
    } else
 
      exitName = std::string(getExit()->getName());
 
  } else
 
    exitName = "<Function Return>";
 
 
 
  return entryName + " => " + exitName;
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::verifyBBInRegion(BlockT *BB) const {
 
  if (!contains(BB))
 
    report_fatal_error("Broken region found: enumerated BB not in region!");
 
 
 
  BlockT *entry = getEntry(), *exit = getExit();
 
 
 
  for (BlockT *Succ :
 
       make_range(BlockTraits::child_begin(BB), BlockTraits::child_end(BB))) {
 
    if (!contains(Succ) && exit != Succ)
 
      report_fatal_error("Broken region found: edges leaving the region must go "
 
                         "to the exit node!");
 
  }
 
 
 
  if (entry != BB) {
 
    for (BlockT *Pred : make_range(InvBlockTraits::child_begin(BB),
 
                                   InvBlockTraits::child_end(BB))) {
 
      if (!contains(Pred))
 
        report_fatal_error("Broken region found: edges entering the region must "
 
                           "go to the entry node!");
 
    }
 
  }
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::verifyWalk(BlockT *BB, std::set<BlockT *> *visited) const {
 
  BlockT *exit = getExit();
 
 
 
  visited->insert(BB);
 
 
 
  verifyBBInRegion(BB);
 
 
 
  for (BlockT *Succ :
 
       make_range(BlockTraits::child_begin(BB), BlockTraits::child_end(BB))) {
 
    if (Succ != exit && visited->find(Succ) == visited->end())
 
      verifyWalk(Succ, visited);
 
  }
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::verifyRegion() const {
 
  // Only do verification when user wants to, otherwise this expensive check
 
  // will be invoked by PMDataManager::verifyPreservedAnalysis when
 
  // a regionpass (marked PreservedAll) finish.
 
  if (!RegionInfoBase<Tr>::VerifyRegionInfo)
 
    return;
 
 
 
  std::set<BlockT *> visited;
 
  verifyWalk(getEntry(), &visited);
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::verifyRegionNest() const {
 
  for (const std::unique_ptr<RegionT> &R : *this)
 
    R->verifyRegionNest();
 
 
 
  verifyRegion();
 
}
 
 
 
template <class Tr>
 
typename RegionBase<Tr>::element_iterator RegionBase<Tr>::element_begin() {
 
  return GraphTraits<RegionT *>::nodes_begin(static_cast<RegionT *>(this));
 
}
 
 
 
template <class Tr>
 
typename RegionBase<Tr>::element_iterator RegionBase<Tr>::element_end() {
 
  return GraphTraits<RegionT *>::nodes_end(static_cast<RegionT *>(this));
 
}
 
 
 
template <class Tr>
 
typename RegionBase<Tr>::const_element_iterator
 
RegionBase<Tr>::element_begin() const {
 
  return GraphTraits<const RegionT *>::nodes_begin(
 
      static_cast<const RegionT *>(this));
 
}
 
 
 
template <class Tr>
 
typename RegionBase<Tr>::const_element_iterator
 
RegionBase<Tr>::element_end() const {
 
  return GraphTraits<const RegionT *>::nodes_end(
 
      static_cast<const RegionT *>(this));
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionBase<Tr>::getSubRegionNode(BlockT *BB) const {
 
  using RegionT = typename Tr::RegionT;
 
 
 
  RegionT *R = RI->getRegionFor(BB);
 
 
 
  if (!R || R == this)
 
    return nullptr;
 
 
 
  // If we pass the BB out of this region, that means our code is broken.
 
  assert(contains(R) && "BB not in current region!");
 
 
 
  while (contains(R->getParent()) && R->getParent() != this)
 
    R = R->getParent();
 
 
 
  if (R->getEntry() != BB)
 
    return nullptr;
 
 
 
  return R;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionNodeT *RegionBase<Tr>::getBBNode(BlockT *BB) const {
 
  assert(contains(BB) && "Can get BB node out of this region!");
 
 
 
  typename BBNodeMapT::const_iterator at = BBNodeMap.find(BB);
 
 
 
  if (at == BBNodeMap.end()) {
 
    auto Deconst = const_cast<RegionBase<Tr> *>(this);
 
    typename BBNodeMapT::value_type V = {
 
        BB,
 
        std::make_unique<RegionNodeT>(static_cast<RegionT *>(Deconst), BB)};
 
    at = BBNodeMap.insert(std::move(V)).first;
 
  }
 
  return at->second.get();
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionNodeT *RegionBase<Tr>::getNode(BlockT *BB) const {
 
  assert(contains(BB) && "Can get BB node out of this region!");
 
  if (RegionT *Child = getSubRegionNode(BB))
 
    return Child->getNode();
 
 
 
  return getBBNode(BB);
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::transferChildrenTo(RegionT *To) {
 
  for (std::unique_ptr<RegionT> &R : *this) {
 
    R->parent = To;
 
    To->children.push_back(std::move(R));
 
  }
 
  children.clear();
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::addSubRegion(RegionT *SubRegion, bool moveChildren) {
 
  assert(!SubRegion->parent && "SubRegion already has a parent!");
 
  assert(llvm::none_of(*this,
 
                       [&](const std::unique_ptr<RegionT> &R) {
 
                         return R.get() == SubRegion;
 
                       }) &&
 
         "Subregion already exists!");
 
 
 
  SubRegion->parent = static_cast<RegionT *>(this);
 
  children.push_back(std::unique_ptr<RegionT>(SubRegion));
 
 
 
  if (!moveChildren)
 
    return;
 
 
 
  assert(SubRegion->children.empty() &&
 
         "SubRegions that contain children are not supported");
 
 
 
  for (RegionNodeT *Element : elements()) {
 
    if (!Element->isSubRegion()) {
 
      BlockT *BB = Element->template getNodeAs<BlockT>();
 
 
 
      if (SubRegion->contains(BB))
 
        RI->setRegionFor(BB, SubRegion);
 
    }
 
  }
 
 
 
  std::vector<std::unique_ptr<RegionT>> Keep;
 
  for (std::unique_ptr<RegionT> &R : *this) {
 
    if (SubRegion->contains(R.get()) && R.get() != SubRegion) {
 
      R->parent = SubRegion;
 
      SubRegion->children.push_back(std::move(R));
 
    } else
 
      Keep.push_back(std::move(R));
 
  }
 
 
 
  children.clear();
 
  children.insert(
 
      children.begin(),
 
      std::move_iterator<typename RegionSet::iterator>(Keep.begin()),
 
      std::move_iterator<typename RegionSet::iterator>(Keep.end()));
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionBase<Tr>::removeSubRegion(RegionT *Child) {
 
  assert(Child->parent == this && "Child is not a child of this region!");
 
  Child->parent = nullptr;
 
  typename RegionSet::iterator I =
 
      llvm::find_if(children, [&](const std::unique_ptr<RegionT> &R) {
 
        return R.get() == Child;
 
      });
 
  assert(I != children.end() && "Region does not exit. Unable to remove.");
 
  children.erase(children.begin() + (I - begin()));
 
  return Child;
 
}
 
 
 
template <class Tr>
 
unsigned RegionBase<Tr>::getDepth() const {
 
  unsigned Depth = 0;
 
 
 
  for (RegionT *R = getParent(); R != nullptr; R = R->getParent())
 
    ++Depth;
 
 
 
  return Depth;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionBase<Tr>::getExpandedRegion() const {
 
  unsigned NumSuccessors = Tr::getNumSuccessors(exit);
 
 
 
  if (NumSuccessors == 0)
 
    return nullptr;
 
 
 
  RegionT *R = RI->getRegionFor(exit);
 
 
 
  if (R->getEntry() != exit) {
 
    for (BlockT *Pred : make_range(InvBlockTraits::child_begin(getExit()),
 
                                   InvBlockTraits::child_end(getExit())))
 
      if (!contains(Pred))
 
        return nullptr;
 
    if (Tr::getNumSuccessors(exit) == 1)
 
      return new RegionT(getEntry(), *BlockTraits::child_begin(exit), RI, DT);
 
    return nullptr;
 
  }
 
 
 
  while (R->getParent() && R->getParent()->getEntry() == exit)
 
    R = R->getParent();
 
 
 
  for (BlockT *Pred : make_range(InvBlockTraits::child_begin(getExit()),
 
                                 InvBlockTraits::child_end(getExit()))) {
 
    if (!(contains(Pred) || R->contains(Pred)))
 
      return nullptr;
 
  }
 
 
 
  return new RegionT(getEntry(), R->getExit(), RI, DT);
 
}
 
 
 
template <class Tr>
 
void RegionBase<Tr>::print(raw_ostream &OS, bool print_tree, unsigned level,
 
                           PrintStyle Style) const {
 
  if (print_tree)
 
    OS.indent(level * 2) << '[' << level << "] " << getNameStr();
 
  else
 
    OS.indent(level * 2) << getNameStr();
 
 
 
  OS << '\n';
 
 
 
  if (Style != PrintNone) {
 
    OS.indent(level * 2) << "{\n";
 
    OS.indent(level * 2 + 2);
 
 
 
    if (Style == PrintBB) {
 
      for (const auto *BB : blocks())
 
        OS << BB->getName() << ", "; // TODO: remove the last ","
 
    } else if (Style == PrintRN) {
 
      for (const RegionNodeT *Element : elements()) {
 
        OS << *Element << ", "; // TODO: remove the last ",
 
      }
 
    }
 
 
 
    OS << '\n';
 
  }
 
 
 
  if (print_tree) {
 
    for (const std::unique_ptr<RegionT> &R : *this)
 
      R->print(OS, print_tree, level + 1, Style);
 
  }
 
 
 
  if (Style != PrintNone)
 
    OS.indent(level * 2) << "} \n";
 
}
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
template <class Tr>
 
void RegionBase<Tr>::dump() const {
 
  print(dbgs(), true, getDepth(), RegionInfoBase<Tr>::printStyle);
 
}
 
#endif
 
 
 
template <class Tr>
 
void RegionBase<Tr>::clearNodeCache() {
 
  BBNodeMap.clear();
 
  for (std::unique_ptr<RegionT> &R : *this)
 
    R->clearNodeCache();
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
// RegionInfoBase implementation
 
//
 
 
 
template <class Tr>
 
RegionInfoBase<Tr>::RegionInfoBase() = default;
 
 
 
template <class Tr>
 
RegionInfoBase<Tr>::~RegionInfoBase() {
 
  releaseMemory();
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::verifyBBMap(const RegionT *R) const {
 
  assert(R && "Re must be non-null");
 
  for (const typename Tr::RegionNodeT *Element : R->elements()) {
 
    if (Element->isSubRegion()) {
 
      const RegionT *SR = Element->template getNodeAs<RegionT>();
 
      verifyBBMap(SR);
 
    } else {
 
      BlockT *BB = Element->template getNodeAs<BlockT>();
 
      if (getRegionFor(BB) != R)
 
        report_fatal_error("BB map does not match region nesting");
 
    }
 
  }
 
}
 
 
 
template <class Tr>
 
bool RegionInfoBase<Tr>::isCommonDomFrontier(BlockT *BB, BlockT *entry,
 
                                             BlockT *exit) const {
 
  for (BlockT *P : make_range(InvBlockTraits::child_begin(BB),
 
                              InvBlockTraits::child_end(BB))) {
 
    if (DT->dominates(entry, P) && !DT->dominates(exit, P))
 
      return false;
 
  }
 
 
 
  return true;
 
}
 
 
 
template <class Tr>
 
bool RegionInfoBase<Tr>::isRegion(BlockT *entry, BlockT *exit) const {
 
  assert(entry && exit && "entry and exit must not be null!");
 
 
 
  using DST = typename DomFrontierT::DomSetType;
 
 
 
  DST *entrySuccs = &DF->find(entry)->second;
 
 
 
  // Exit is the header of a loop that contains the entry. In this case,
 
  // the dominance frontier must only contain the exit.
 
  if (!DT->dominates(entry, exit)) {
 
    for (BlockT *successor : *entrySuccs) {
 
      if (successor != exit && successor != entry)
 
        return false;
 
    }
 
 
 
    return true;
 
  }
 
 
 
  DST *exitSuccs = &DF->find(exit)->second;
 
 
 
  // Do not allow edges leaving the region.
 
  for (BlockT *Succ : *entrySuccs) {
 
    if (Succ == exit || Succ == entry)
 
      continue;
 
    if (exitSuccs->find(Succ) == exitSuccs->end())
 
      return false;
 
    if (!isCommonDomFrontier(Succ, entry, exit))
 
      return false;
 
  }
 
 
 
  // Do not allow edges pointing into the region.
 
  for (BlockT *Succ : *exitSuccs) {
 
    if (DT->properlyDominates(entry, Succ) && Succ != exit)
 
      return false;
 
  }
 
 
 
  return true;
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::insertShortCut(BlockT *entry, BlockT *exit,
 
                                        BBtoBBMap *ShortCut) const {
 
  assert(entry && exit && "entry and exit must not be null!");
 
 
 
  typename BBtoBBMap::iterator e = ShortCut->find(exit);
 
 
 
  if (e == ShortCut->end())
 
    // No further region at exit available.
 
    (*ShortCut)[entry] = exit;
 
  else {
 
    // We found a region e that starts at exit. Therefore (entry, e->second)
 
    // is also a region, that is larger than (entry, exit). Insert the
 
    // larger one.
 
    BlockT *BB = e->second;
 
    (*ShortCut)[entry] = BB;
 
  }
 
}
 
 
 
template <class Tr>
 
typename Tr::DomTreeNodeT *
 
RegionInfoBase<Tr>::getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const {
 
  typename BBtoBBMap::iterator e = ShortCut->find(N->getBlock());
 
 
 
  if (e == ShortCut->end())
 
    return N->getIDom();
 
 
 
  return PDT->getNode(e->second)->getIDom();
 
}
 
 
 
template <class Tr>
 
bool RegionInfoBase<Tr>::isTrivialRegion(BlockT *entry, BlockT *exit) const {
 
  assert(entry && exit && "entry and exit must not be null!");
 
 
 
  unsigned num_successors =
 
      BlockTraits::child_end(entry) - BlockTraits::child_begin(entry);
 
 
 
  if (num_successors <= 1 && exit == *(BlockTraits::child_begin(entry)))
 
    return true;
 
 
 
  return false;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionInfoBase<Tr>::createRegion(BlockT *entry,
 
                                                       BlockT *exit) {
 
  assert(entry && exit && "entry and exit must not be null!");
 
 
 
  if (isTrivialRegion(entry, exit))
 
    return nullptr;
 
 
 
  RegionT *region =
 
      new RegionT(entry, exit, static_cast<RegionInfoT *>(this), DT);
 
  BBtoRegion.insert({entry, region});
 
 
 
#ifdef EXPENSIVE_CHECKS
 
  region->verifyRegion();
 
#else
 
  LLVM_DEBUG(region->verifyRegion());
 
#endif
 
 
 
  updateStatistics(region);
 
  return region;
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::findRegionsWithEntry(BlockT *entry,
 
                                              BBtoBBMap *ShortCut) {
 
  assert(entry);
 
 
 
  DomTreeNodeT *N = PDT->getNode(entry);
 
  if (!N)
 
    return;
 
 
 
  RegionT *lastRegion = nullptr;
 
  BlockT *lastExit = entry;
 
 
 
  // As only a BasicBlock that postdominates entry can finish a region, walk the
 
  // post dominance tree upwards.
 
  while ((N = getNextPostDom(N, ShortCut))) {
 
    BlockT *exit = N->getBlock();
 
 
 
    if (!exit)
 
      break;
 
 
 
    if (isRegion(entry, exit)) {
 
      RegionT *newRegion = createRegion(entry, exit);
 
 
 
      if (lastRegion)
 
        newRegion->addSubRegion(lastRegion);
 
 
 
      lastRegion = newRegion;
 
      lastExit = exit;
 
    }
 
 
 
    // This can never be a region, so stop the search.
 
    if (!DT->dominates(entry, exit))
 
      break;
 
  }
 
 
 
  // Tried to create regions from entry to lastExit.  Next time take a
 
  // shortcut from entry to lastExit.
 
  if (lastExit != entry)
 
    insertShortCut(entry, lastExit, ShortCut);
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::scanForRegions(FuncT &F, BBtoBBMap *ShortCut) {
 
  using FuncPtrT = std::add_pointer_t<FuncT>;
 
 
 
  BlockT *entry = GraphTraits<FuncPtrT>::getEntryNode(&F);
 
  DomTreeNodeT *N = DT->getNode(entry);
 
 
 
  // Iterate over the dominance tree in post order to start with the small
 
  // regions from the bottom of the dominance tree.  If the small regions are
 
  // detected first, detection of bigger regions is faster, as we can jump
 
  // over the small regions.
 
  for (auto DomNode : post_order(N))
 
    findRegionsWithEntry(DomNode->getBlock(), ShortCut);
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionInfoBase<Tr>::getTopMostParent(RegionT *region) {
 
  while (region->getParent())
 
    region = region->getParent();
 
 
 
  return region;
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::buildRegionsTree(DomTreeNodeT *N, RegionT *region) {
 
  BlockT *BB = N->getBlock();
 
 
 
  // Passed region exit
 
  while (BB == region->getExit())
 
    region = region->getParent();
 
 
 
  typename BBtoRegionMap::iterator it = BBtoRegion.find(BB);
 
 
 
  // This basic block is a start block of a region. It is already in the
 
  // BBtoRegion relation. Only the child basic blocks have to be updated.
 
  if (it != BBtoRegion.end()) {
 
    RegionT *newRegion = it->second;
 
    region->addSubRegion(getTopMostParent(newRegion));
 
    region = newRegion;
 
  } else {
 
    BBtoRegion[BB] = region;
 
  }
 
 
 
  for (DomTreeNodeBase<BlockT> *C : *N) {
 
    buildRegionsTree(C, region);
 
  }
 
}
 
 
 
#ifdef EXPENSIVE_CHECKS
 
template <class Tr>
 
bool RegionInfoBase<Tr>::VerifyRegionInfo = true;
 
#else
 
template <class Tr>
 
bool RegionInfoBase<Tr>::VerifyRegionInfo = false;
 
#endif
 
 
 
template <class Tr>
 
typename Tr::RegionT::PrintStyle RegionInfoBase<Tr>::printStyle =
 
    RegionBase<Tr>::PrintNone;
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::print(raw_ostream &OS) const {
 
  OS << "Region tree:\n";
 
  TopLevelRegion->print(OS, true, 0, printStyle);
 
  OS << "End region tree\n";
 
}
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
template <class Tr>
 
void RegionInfoBase<Tr>::dump() const { print(dbgs()); }
 
#endif
 
 
 
template <class Tr> void RegionInfoBase<Tr>::releaseMemory() {
 
  BBtoRegion.clear();
 
  if (TopLevelRegion) {
 
    delete TopLevelRegion;
 
    TopLevelRegion = nullptr;
 
  }
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::verifyAnalysis() const {
 
  // Do only verify regions if explicitely activated using EXPENSIVE_CHECKS or
 
  // -verify-region-info
 
  if (!RegionInfoBase<Tr>::VerifyRegionInfo)
 
    return;
 
 
 
  TopLevelRegion->verifyRegionNest();
 
 
 
  verifyBBMap(TopLevelRegion);
 
}
 
 
 
// Region pass manager support.
 
template <class Tr>
 
typename Tr::RegionT *RegionInfoBase<Tr>::getRegionFor(BlockT *BB) const {
 
  return BBtoRegion.lookup(BB);
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::setRegionFor(BlockT *BB, RegionT *R) {
 
  BBtoRegion[BB] = R;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionInfoBase<Tr>::operator[](BlockT *BB) const {
 
  return getRegionFor(BB);
 
}
 
 
 
template <class Tr>
 
typename RegionInfoBase<Tr>::BlockT *
 
RegionInfoBase<Tr>::getMaxRegionExit(BlockT *BB) const {
 
  BlockT *Exit = nullptr;
 
 
 
  while (true) {
 
    // Get largest region that starts at BB.
 
    RegionT *R = getRegionFor(BB);
 
    while (R && R->getParent() && R->getParent()->getEntry() == BB)
 
      R = R->getParent();
 
 
 
    // Get the single exit of BB.
 
    if (R && R->getEntry() == BB)
 
      Exit = R->getExit();
 
    else if (++BlockTraits::child_begin(BB) == BlockTraits::child_end(BB))
 
      Exit = *BlockTraits::child_begin(BB);
 
    else // No single exit exists.
 
      return Exit;
 
 
 
    // Get largest region that starts at Exit.
 
    RegionT *ExitR = getRegionFor(Exit);
 
    while (ExitR && ExitR->getParent() &&
 
           ExitR->getParent()->getEntry() == Exit)
 
      ExitR = ExitR->getParent();
 
 
 
    for (BlockT *Pred : make_range(InvBlockTraits::child_begin(Exit),
 
                                   InvBlockTraits::child_end(Exit))) {
 
      if (!R->contains(Pred) && !ExitR->contains(Pred))
 
        break;
 
    }
 
 
 
    // This stops infinite cycles.
 
    if (DT->dominates(Exit, BB))
 
      break;
 
 
 
    BB = Exit;
 
  }
 
 
 
  return Exit;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *RegionInfoBase<Tr>::getCommonRegion(RegionT *A,
 
                                                          RegionT *B) const {
 
  assert(A && B && "One of the Regions is NULL");
 
 
 
  if (A->contains(B))
 
    return A;
 
 
 
  while (!B->contains(A))
 
    B = B->getParent();
 
 
 
  return B;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *
 
RegionInfoBase<Tr>::getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const {
 
  RegionT *ret = Regions.pop_back_val();
 
 
 
  for (RegionT *R : Regions)
 
    ret = getCommonRegion(ret, R);
 
 
 
  return ret;
 
}
 
 
 
template <class Tr>
 
typename Tr::RegionT *
 
RegionInfoBase<Tr>::getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const {
 
  RegionT *ret = getRegionFor(BBs.back());
 
  BBs.pop_back();
 
 
 
  for (BlockT *BB : BBs)
 
    ret = getCommonRegion(ret, getRegionFor(BB));
 
 
 
  return ret;
 
}
 
 
 
template <class Tr>
 
void RegionInfoBase<Tr>::calculate(FuncT &F) {
 
  using FuncPtrT = std::add_pointer_t<FuncT>;
 
 
 
  // ShortCut a function where for every BB the exit of the largest region
 
  // starting with BB is stored. These regions can be threated as single BBS.
 
  // This improves performance on linear CFGs.
 
  BBtoBBMap ShortCut;
 
 
 
  scanForRegions(F, &ShortCut);
 
  BlockT *BB = GraphTraits<FuncPtrT>::getEntryNode(&F);
 
  buildRegionsTree(DT->getNode(BB), TopLevelRegion);
 
}
 
 
 
} // end namespace llvm
 
 
 
#undef DEBUG_TYPE
 
 
 
#endif // LLVM_ANALYSIS_REGIONINFOIMPL_H