Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // \file
  10. // An automatic updater for MemorySSA that handles arbitrary insertion,
  11. // deletion, and moves.  It performs phi insertion where necessary, and
  12. // automatically updates the MemorySSA IR to be correct.
  13. // While updating loads or removing instructions is often easy enough to not
  14. // need this, updating stores should generally not be attemped outside this
  15. // API.
  16. //
  17. // Basic API usage:
  18. // Create the memory access you want for the instruction (this is mainly so
  19. // we know where it is, without having to duplicate the entire set of create
  20. // functions MemorySSA supports).
  21. // Call insertDef or insertUse depending on whether it's a MemoryUse or a
  22. // MemoryDef.
  23. // That's it.
  24. //
  25. // For moving, first, move the instruction itself using the normal SSA
  26. // instruction moving API, then just call moveBefore, moveAfter,or moveTo with
  27. // the right arguments.
  28. //
  29. //===----------------------------------------------------------------------===//
  30.  
  31. #ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
  32. #define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
  33.  
  34. #include "llvm/ADT/SmallPtrSet.h"
  35. #include "llvm/ADT/SmallSet.h"
  36. #include "llvm/ADT/SmallVector.h"
  37. #include "llvm/Analysis/MemorySSA.h"
  38. #include "llvm/IR/ValueHandle.h"
  39. #include "llvm/IR/ValueMap.h"
  40. #include "llvm/Support/CFGDiff.h"
  41.  
  42. namespace llvm {
  43.  
  44. class BasicBlock;
  45. class DominatorTree;
  46. class Instruction;
  47. class LoopBlocksRPO;
  48. template <typename T, unsigned int N> class SmallSetVector;
  49.  
  50. using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
  51. using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
  52. using CFGUpdate = cfg::Update<BasicBlock *>;
  53.  
  54. class MemorySSAUpdater {
  55. private:
  56.   MemorySSA *MSSA;
  57.  
  58.   /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
  59.   /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
  60.   SmallVector<WeakVH, 16> InsertedPHIs;
  61.  
  62.   SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
  63.   SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
  64.  
  65. public:
  66.   MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
  67.  
  68.   /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
  69.   /// below the new def block (and any inserted phis).  RenameUses should be set
  70.   /// to true if the definition may cause new aliases for loads below it.  This
  71.   /// is not the case for hoisting or sinking or other forms of code *movement*.
  72.   /// It *is* the case for straight code insertion.
  73.   /// For example:
  74.   /// store a
  75.   /// if (foo) { }
  76.   /// load a
  77.   ///
  78.   /// Moving the store into the if block, and calling insertDef, does not
  79.   /// require RenameUses.
  80.   /// However, changing it to:
  81.   /// store a
  82.   /// if (foo) { store b }
  83.   /// load a
  84.   /// Where a mayalias b, *does* require RenameUses be set to true.
  85.   void insertDef(MemoryDef *Def, bool RenameUses = false);
  86.   void insertUse(MemoryUse *Use, bool RenameUses = false);
  87.   /// Update the MemoryPhi in `To` following an edge deletion between `From` and
  88.   /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
  89.   void removeEdge(BasicBlock *From, BasicBlock *To);
  90.   /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
  91.   /// following a CFG change that replaced multiple edges (switch) with a direct
  92.   /// branch.
  93.   void removeDuplicatePhiEdgesBetween(const BasicBlock *From,
  94.                                       const BasicBlock *To);
  95.   /// Update MemorySSA when inserting a unique backedge block for a loop.
  96.   void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader,
  97.                                                   BasicBlock *LoopPreheader,
  98.                                                   BasicBlock *BackedgeBlock);
  99.   /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
  100.   /// the exit blocks and a 1:1 mapping of all blocks and instructions
  101.   /// cloned. This involves duplicating all defs and uses in the cloned blocks
  102.   /// Updating phi nodes in exit block successors is done separately.
  103.   void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
  104.                            ArrayRef<BasicBlock *> ExitBlocks,
  105.                            const ValueToValueMapTy &VM,
  106.                            bool IgnoreIncomingWithNoClones = false);
  107.   // Block BB was fully or partially cloned into its predecessor P1. Map
  108.   // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
  109.   void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
  110.                                     const ValueToValueMapTy &VM);
  111.   /// Update phi nodes in exit block successors following cloning. Exit blocks
  112.   /// that were not cloned don't have additional predecessors added.
  113.   void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
  114.                                      const ValueToValueMapTy &VMap,
  115.                                      DominatorTree &DT);
  116.   void updateExitBlocksForClonedLoop(
  117.       ArrayRef<BasicBlock *> ExitBlocks,
  118.       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
  119.  
  120.   /// Apply CFG updates, analogous with the DT edge updates. By default, the
  121.   /// DT is assumed to be already up to date. If UpdateDTFirst is true, first
  122.   /// update the DT with the same updates.
  123.   void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT,
  124.                     bool UpdateDTFirst = false);
  125.   /// Apply CFG insert updates, analogous with the DT edge updates.
  126.   void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
  127.  
  128.   void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
  129.   void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
  130.   void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
  131.                    MemorySSA::InsertionPlace Where);
  132.   /// `From` block was spliced into `From` and `To`. There is a CFG edge from
  133.   /// `From` to `To`. Move all accesses from `From` to `To` starting at
  134.   /// instruction `Start`. `To` is newly created BB, so empty of
  135.   /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
  136.   /// `To` with MPhi nodes need to update incoming block.
  137.   /// |------|        |------|
  138.   /// | From |        | From |
  139.   /// |      |        |------|
  140.   /// |      |           ||
  141.   /// |      |   =>      \/
  142.   /// |      |        |------|  <- Start
  143.   /// |      |        |  To  |
  144.   /// |------|        |------|
  145.   void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
  146.                                 Instruction *Start);
  147.   /// `From` block was merged into `To`. There is a CFG edge from `To` to
  148.   /// `From`.`To` still branches to `From`, but all instructions were moved and
  149.   /// `From` is now an empty block; `From` is about to be deleted. Move all
  150.   /// accesses from `From` to `To` starting at instruction `Start`. `To` may
  151.   /// have multiple successors, `From` has a single predecessor. `From` may have
  152.   /// successors with MPhi nodes, replace their incoming block with `To`.
  153.   /// |------|        |------|
  154.   /// |  To  |        |  To  |
  155.   /// |------|        |      |
  156.   ///    ||      =>   |      |
  157.   ///    \/           |      |
  158.   /// |------|        |      |  <- Start
  159.   /// | From |        |      |
  160.   /// |------|        |------|
  161.   void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
  162.                                Instruction *Start);
  163.   /// A new empty BasicBlock (New) now branches directly to Old. Some of
  164.   /// Old's predecessors (Preds) are now branching to New instead of Old.
  165.   /// If New is the only predecessor, move Old's Phi, if present, to New.
  166.   /// Otherwise, add a new Phi in New with appropriate incoming values, and
  167.   /// update the incoming values in Old's Phi node too, if present.
  168.   void wireOldPredecessorsToNewImmediatePredecessor(
  169.       BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
  170.       bool IdenticalEdgesWereMerged = true);
  171.   // The below are utility functions. Other than creation of accesses to pass
  172.   // to insertDef, and removeAccess to remove accesses, you should generally
  173.   // not attempt to update memoryssa yourself. It is very non-trivial to get
  174.   // the edge cases right, and the above calls already operate in near-optimal
  175.   // time bounds.
  176.  
  177.   /// Create a MemoryAccess in MemorySSA at a specified point in a block,
  178.   /// with a specified clobbering definition.
  179.   ///
  180.   /// Returns the new MemoryAccess.
  181.   /// This should be called when a memory instruction is created that is being
  182.   /// used to replace an existing memory instruction. It will *not* create PHI
  183.   /// nodes, or verify the clobbering definition. The insertion place is used
  184.   /// solely to determine where in the memoryssa access lists the instruction
  185.   /// will be placed. The caller is expected to keep ordering the same as
  186.   /// instructions.
  187.   /// It will return the new MemoryAccess.
  188.   /// Note: If a MemoryAccess already exists for I, this function will make it
  189.   /// inaccessible and it *must* have removeMemoryAccess called on it.
  190.   MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
  191.                                        const BasicBlock *BB,
  192.                                        MemorySSA::InsertionPlace Point);
  193.  
  194.   /// Create a MemoryAccess in MemorySSA before or after an existing
  195.   /// MemoryAccess.
  196.   ///
  197.   /// Returns the new MemoryAccess.
  198.   /// This should be called when a memory instruction is created that is being
  199.   /// used to replace an existing memory instruction. It will *not* create PHI
  200.   /// nodes, or verify the clobbering definition.
  201.   ///
  202.   /// Note: If a MemoryAccess already exists for I, this function will make it
  203.   /// inaccessible and it *must* have removeMemoryAccess called on it.
  204.   MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
  205.                                            MemoryAccess *Definition,
  206.                                            MemoryUseOrDef *InsertPt);
  207.   MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
  208.                                           MemoryAccess *Definition,
  209.                                           MemoryAccess *InsertPt);
  210.  
  211.   /// Remove a MemoryAccess from MemorySSA, including updating all
  212.   /// definitions and uses.
  213.   /// This should be called when a memory instruction that has a MemoryAccess
  214.   /// associated with it is erased from the program.  For example, if a store or
  215.   /// load is simply erased (not replaced), removeMemoryAccess should be called
  216.   /// on the MemoryAccess for that store/load.
  217.   void removeMemoryAccess(MemoryAccess *, bool OptimizePhis = false);
  218.  
  219.   /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
  220.   /// This should be called when an instruction (load/store) is deleted from
  221.   /// the program.
  222.   void removeMemoryAccess(const Instruction *I, bool OptimizePhis = false) {
  223.     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
  224.       removeMemoryAccess(MA, OptimizePhis);
  225.   }
  226.  
  227.   /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
  228.   /// Assumption we make here: all uses of deleted defs and phi must either
  229.   /// occur in blocks about to be deleted (thus will be deleted as well), or
  230.   /// they occur in phis that will simply lose an incoming value.
  231.   /// Deleted blocks still have successor info, but their predecessor edges and
  232.   /// Phi nodes may already be updated. Instructions in DeadBlocks should be
  233.   /// deleted after this call.
  234.   void removeBlocks(const SmallSetVector<BasicBlock *, 8> &DeadBlocks);
  235.  
  236.   /// Instruction I will be changed to an unreachable. Remove all accesses in
  237.   /// I's block that follow I (inclusive), and update the Phis in the blocks'
  238.   /// successors.
  239.   void changeToUnreachable(const Instruction *I);
  240.  
  241.   /// Get handle on MemorySSA.
  242.   MemorySSA* getMemorySSA() const { return MSSA; }
  243.  
  244. private:
  245.   // Move What before Where in the MemorySSA IR.
  246.   template <class WhereType>
  247.   void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
  248.   // Move all memory accesses from `From` to `To` starting at `Start`.
  249.   // Restrictions apply, see public wrappers of this method.
  250.   void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
  251.   MemoryAccess *getPreviousDef(MemoryAccess *);
  252.   MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
  253.   MemoryAccess *
  254.   getPreviousDefFromEnd(BasicBlock *,
  255.                         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
  256.   MemoryAccess *
  257.   getPreviousDefRecursive(BasicBlock *,
  258.                           DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
  259.   MemoryAccess *recursePhi(MemoryAccess *Phi);
  260.   MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi);
  261.   template <class RangeType>
  262.   MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
  263.   void tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs);
  264.   void fixupDefs(const SmallVectorImpl<WeakVH> &);
  265.   // Clone all uses and defs from BB to NewBB given a 1:1 map of all
  266.   // instructions and blocks cloned, and a map of MemoryPhi : Definition
  267.   // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
  268.   // instructions and old blocks to cloned blocks. MPhiMap, is created in the
  269.   // caller of this private method, and maps existing MemoryPhis to new
  270.   // definitions that new MemoryAccesses must point to. These definitions may
  271.   // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
  272.   // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
  273.   // may be MemoryPhis or MemoryDefs and not MemoryUses.
  274.   // If CloneWasSimplified = true, the clone was exact. Otherwise, assume that
  275.   // the clone involved simplifications that may have: (1) turned a MemoryUse
  276.   // into an instruction that MemorySSA has no representation for, or (2) turned
  277.   // a MemoryDef into a MemoryUse or an instruction that MemorySSA has no
  278.   // representation for. No other cases are supported.
  279.   void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
  280.                         const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
  281.                         bool CloneWasSimplified = false);
  282.   template <typename Iter>
  283.   void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
  284.                                             Iter ValuesBegin, Iter ValuesEnd,
  285.                                             DominatorTree &DT);
  286.   void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
  287.                           const GraphDiff<BasicBlock *> *GD);
  288. };
  289. } // end namespace llvm
  290.  
  291. #endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H
  292.