//===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// \file
 
// An automatic updater for MemorySSA that handles arbitrary insertion,
 
// deletion, and moves.  It performs phi insertion where necessary, and
 
// automatically updates the MemorySSA IR to be correct.
 
// While updating loads or removing instructions is often easy enough to not
 
// need this, updating stores should generally not be attemped outside this
 
// API.
 
//
 
// Basic API usage:
 
// Create the memory access you want for the instruction (this is mainly so
 
// we know where it is, without having to duplicate the entire set of create
 
// functions MemorySSA supports).
 
// Call insertDef or insertUse depending on whether it's a MemoryUse or a
 
// MemoryDef.
 
// That's it.
 
//
 
// For moving, first, move the instruction itself using the normal SSA
 
// instruction moving API, then just call moveBefore, moveAfter,or moveTo with
 
// the right arguments.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
 
#define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
 
 
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Analysis/MemorySSA.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "llvm/IR/ValueMap.h"
 
#include "llvm/Support/CFGDiff.h"
 
 
 
namespace llvm {
 
 
 
class BasicBlock;
 
class DominatorTree;
 
class Instruction;
 
class LoopBlocksRPO;
 
template <typename T, unsigned int N> class SmallSetVector;
 
 
 
using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
 
using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
 
using CFGUpdate = cfg::Update<BasicBlock *>;
 
 
 
class MemorySSAUpdater {
 
private:
 
  MemorySSA *MSSA;
 
 
 
  /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
 
  /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
 
  SmallVector<WeakVH, 16> InsertedPHIs;
 
 
 
  SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
 
  SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
 
 
 
public:
 
  MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
 
 
 
  /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
 
  /// below the new def block (and any inserted phis).  RenameUses should be set
 
  /// to true if the definition may cause new aliases for loads below it.  This
 
  /// is not the case for hoisting or sinking or other forms of code *movement*.
 
  /// It *is* the case for straight code insertion.
 
  /// For example:
 
  /// store a
 
  /// if (foo) { }
 
  /// load a
 
  ///
 
  /// Moving the store into the if block, and calling insertDef, does not
 
  /// require RenameUses.
 
  /// However, changing it to:
 
  /// store a
 
  /// if (foo) { store b }
 
  /// load a
 
  /// Where a mayalias b, *does* require RenameUses be set to true.
 
  void insertDef(MemoryDef *Def, bool RenameUses = false);
 
  void insertUse(MemoryUse *Use, bool RenameUses = false);
 
  /// Update the MemoryPhi in `To` following an edge deletion between `From` and
 
  /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
 
  void removeEdge(BasicBlock *From, BasicBlock *To);
 
  /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
 
  /// following a CFG change that replaced multiple edges (switch) with a direct
 
  /// branch.
 
  void removeDuplicatePhiEdgesBetween(const BasicBlock *From,
 
                                      const BasicBlock *To);
 
  /// Update MemorySSA when inserting a unique backedge block for a loop.
 
  void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader,
 
                                                  BasicBlock *LoopPreheader,
 
                                                  BasicBlock *BackedgeBlock);
 
  /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
 
  /// the exit blocks and a 1:1 mapping of all blocks and instructions
 
  /// cloned. This involves duplicating all defs and uses in the cloned blocks
 
  /// Updating phi nodes in exit block successors is done separately.
 
  void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
 
                           ArrayRef<BasicBlock *> ExitBlocks,
 
                           const ValueToValueMapTy &VM,
 
                           bool IgnoreIncomingWithNoClones = false);
 
  // Block BB was fully or partially cloned into its predecessor P1. Map
 
  // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
 
  void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
 
                                    const ValueToValueMapTy &VM);
 
  /// Update phi nodes in exit block successors following cloning. Exit blocks
 
  /// that were not cloned don't have additional predecessors added.
 
  void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
 
                                     const ValueToValueMapTy &VMap,
 
                                     DominatorTree &DT);
 
  void updateExitBlocksForClonedLoop(
 
      ArrayRef<BasicBlock *> ExitBlocks,
 
      ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
 
 
 
  /// Apply CFG updates, analogous with the DT edge updates. By default, the
 
  /// DT is assumed to be already up to date. If UpdateDTFirst is true, first
 
  /// update the DT with the same updates.
 
  void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT,
 
                    bool UpdateDTFirst = false);
 
  /// Apply CFG insert updates, analogous with the DT edge updates.
 
  void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
 
 
 
  void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
 
  void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
 
  void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
 
                   MemorySSA::InsertionPlace Where);
 
  /// `From` block was spliced into `From` and `To`. There is a CFG edge from
 
  /// `From` to `To`. Move all accesses from `From` to `To` starting at
 
  /// instruction `Start`. `To` is newly created BB, so empty of
 
  /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
 
  /// `To` with MPhi nodes need to update incoming block.
 
  /// |------|        |------|
 
  /// | From |        | From |
 
  /// |      |        |------|
 
  /// |      |           ||
 
  /// |      |   =>      \/
 
  /// |      |        |------|  <- Start
 
  /// |      |        |  To  |
 
  /// |------|        |------|
 
  void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
 
                                Instruction *Start);
 
  /// `From` block was merged into `To`. There is a CFG edge from `To` to
 
  /// `From`.`To` still branches to `From`, but all instructions were moved and
 
  /// `From` is now an empty block; `From` is about to be deleted. Move all
 
  /// accesses from `From` to `To` starting at instruction `Start`. `To` may
 
  /// have multiple successors, `From` has a single predecessor. `From` may have
 
  /// successors with MPhi nodes, replace their incoming block with `To`.
 
  /// |------|        |------|
 
  /// |  To  |        |  To  |
 
  /// |------|        |      |
 
  ///    ||      =>   |      |
 
  ///    \/           |      |
 
  /// |------|        |      |  <- Start
 
  /// | From |        |      |
 
  /// |------|        |------|
 
  void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
 
                               Instruction *Start);
 
  /// A new empty BasicBlock (New) now branches directly to Old. Some of
 
  /// Old's predecessors (Preds) are now branching to New instead of Old.
 
  /// If New is the only predecessor, move Old's Phi, if present, to New.
 
  /// Otherwise, add a new Phi in New with appropriate incoming values, and
 
  /// update the incoming values in Old's Phi node too, if present.
 
  void wireOldPredecessorsToNewImmediatePredecessor(
 
      BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
 
      bool IdenticalEdgesWereMerged = true);
 
  // The below are utility functions. Other than creation of accesses to pass
 
  // to insertDef, and removeAccess to remove accesses, you should generally
 
  // not attempt to update memoryssa yourself. It is very non-trivial to get
 
  // the edge cases right, and the above calls already operate in near-optimal
 
  // time bounds.
 
 
 
  /// Create a MemoryAccess in MemorySSA at a specified point in a block,
 
  /// with a specified clobbering definition.
 
  ///
 
  /// Returns the new MemoryAccess.
 
  /// This should be called when a memory instruction is created that is being
 
  /// used to replace an existing memory instruction. It will *not* create PHI
 
  /// nodes, or verify the clobbering definition. The insertion place is used
 
  /// solely to determine where in the memoryssa access lists the instruction
 
  /// will be placed. The caller is expected to keep ordering the same as
 
  /// instructions.
 
  /// It will return the new MemoryAccess.
 
  /// Note: If a MemoryAccess already exists for I, this function will make it
 
  /// inaccessible and it *must* have removeMemoryAccess called on it.
 
  MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
 
                                       const BasicBlock *BB,
 
                                       MemorySSA::InsertionPlace Point);
 
 
 
  /// Create a MemoryAccess in MemorySSA before or after an existing
 
  /// MemoryAccess.
 
  ///
 
  /// Returns the new MemoryAccess.
 
  /// This should be called when a memory instruction is created that is being
 
  /// used to replace an existing memory instruction. It will *not* create PHI
 
  /// nodes, or verify the clobbering definition.
 
  ///
 
  /// Note: If a MemoryAccess already exists for I, this function will make it
 
  /// inaccessible and it *must* have removeMemoryAccess called on it.
 
  MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
 
                                           MemoryAccess *Definition,
 
                                           MemoryUseOrDef *InsertPt);
 
  MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
 
                                          MemoryAccess *Definition,
 
                                          MemoryAccess *InsertPt);
 
 
 
  /// Remove a MemoryAccess from MemorySSA, including updating all
 
  /// definitions and uses.
 
  /// This should be called when a memory instruction that has a MemoryAccess
 
  /// associated with it is erased from the program.  For example, if a store or
 
  /// load is simply erased (not replaced), removeMemoryAccess should be called
 
  /// on the MemoryAccess for that store/load.
 
  void removeMemoryAccess(MemoryAccess *, bool OptimizePhis = false);
 
 
 
  /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
 
  /// This should be called when an instruction (load/store) is deleted from
 
  /// the program.
 
  void removeMemoryAccess(const Instruction *I, bool OptimizePhis = false) {
 
    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
 
      removeMemoryAccess(MA, OptimizePhis);
 
  }
 
 
 
  /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
 
  /// Assumption we make here: all uses of deleted defs and phi must either
 
  /// occur in blocks about to be deleted (thus will be deleted as well), or
 
  /// they occur in phis that will simply lose an incoming value.
 
  /// Deleted blocks still have successor info, but their predecessor edges and
 
  /// Phi nodes may already be updated. Instructions in DeadBlocks should be
 
  /// deleted after this call.
 
  void removeBlocks(const SmallSetVector<BasicBlock *, 8> &DeadBlocks);
 
 
 
  /// Instruction I will be changed to an unreachable. Remove all accesses in
 
  /// I's block that follow I (inclusive), and update the Phis in the blocks'
 
  /// successors.
 
  void changeToUnreachable(const Instruction *I);
 
 
 
  /// Get handle on MemorySSA.
 
  MemorySSA* getMemorySSA() const { return MSSA; }
 
 
 
private:
 
  // Move What before Where in the MemorySSA IR.
 
  template <class WhereType>
 
  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
 
  // Move all memory accesses from `From` to `To` starting at `Start`.
 
  // Restrictions apply, see public wrappers of this method.
 
  void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
 
  MemoryAccess *getPreviousDef(MemoryAccess *);
 
  MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
 
  MemoryAccess *
 
  getPreviousDefFromEnd(BasicBlock *,
 
                        DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
 
  MemoryAccess *
 
  getPreviousDefRecursive(BasicBlock *,
 
                          DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
 
  MemoryAccess *recursePhi(MemoryAccess *Phi);
 
  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi);
 
  template <class RangeType>
 
  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
 
  void tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs);
 
  void fixupDefs(const SmallVectorImpl<WeakVH> &);
 
  // Clone all uses and defs from BB to NewBB given a 1:1 map of all
 
  // instructions and blocks cloned, and a map of MemoryPhi : Definition
 
  // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
 
  // instructions and old blocks to cloned blocks. MPhiMap, is created in the
 
  // caller of this private method, and maps existing MemoryPhis to new
 
  // definitions that new MemoryAccesses must point to. These definitions may
 
  // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
 
  // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
 
  // may be MemoryPhis or MemoryDefs and not MemoryUses.
 
  // If CloneWasSimplified = true, the clone was exact. Otherwise, assume that
 
  // the clone involved simplifications that may have: (1) turned a MemoryUse
 
  // into an instruction that MemorySSA has no representation for, or (2) turned
 
  // a MemoryDef into a MemoryUse or an instruction that MemorySSA has no
 
  // representation for. No other cases are supported.
 
  void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
 
                        const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
 
                        bool CloneWasSimplified = false);
 
  template <typename Iter>
 
  void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
 
                                            Iter ValuesBegin, Iter ValuesEnd,
 
                                            DominatorTree &DT);
 
  void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
 
                          const GraphDiff<BasicBlock *> *GD);
 
};
 
} // end namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H