//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// \file
 
/// This file exposes an interface to building/using memory SSA to
 
/// walk memory instructions using a use/def graph.
 
///
 
/// Memory SSA class builds an SSA form that links together memory access
 
/// instructions such as loads, stores, atomics, and calls. Additionally, it
 
/// does a trivial form of "heap versioning" Every time the memory state changes
 
/// in the program, we generate a new heap version. It generates
 
/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
 
///
 
/// As a trivial example,
 
/// define i32 @main() #0 {
 
/// entry:
 
///   %call = call noalias i8* @_Znwm(i64 4) #2
 
///   %0 = bitcast i8* %call to i32*
 
///   %call1 = call noalias i8* @_Znwm(i64 4) #2
 
///   %1 = bitcast i8* %call1 to i32*
 
///   store i32 5, i32* %0, align 4
 
///   store i32 7, i32* %1, align 4
 
///   %2 = load i32* %0, align 4
 
///   %3 = load i32* %1, align 4
 
///   %add = add nsw i32 %2, %3
 
///   ret i32 %add
 
/// }
 
///
 
/// Will become
 
/// define i32 @main() #0 {
 
/// entry:
 
///   ; 1 = MemoryDef(0)
 
///   %call = call noalias i8* @_Znwm(i64 4) #3
 
///   %2 = bitcast i8* %call to i32*
 
///   ; 2 = MemoryDef(1)
 
///   %call1 = call noalias i8* @_Znwm(i64 4) #3
 
///   %4 = bitcast i8* %call1 to i32*
 
///   ; 3 = MemoryDef(2)
 
///   store i32 5, i32* %2, align 4
 
///   ; 4 = MemoryDef(3)
 
///   store i32 7, i32* %4, align 4
 
///   ; MemoryUse(3)
 
///   %7 = load i32* %2, align 4
 
///   ; MemoryUse(4)
 
///   %8 = load i32* %4, align 4
 
///   %add = add nsw i32 %7, %8
 
///   ret i32 %add
 
/// }
 
///
 
/// Given this form, all the stores that could ever effect the load at %8 can be
 
/// gotten by using the MemoryUse associated with it, and walking from use to
 
/// def until you hit the top of the function.
 
///
 
/// Each def also has a list of users associated with it, so you can walk from
 
/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
 
/// but not the RHS of MemoryDefs. You can see this above at %7, which would
 
/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
 
/// store, all the MemoryUses on its use lists are may-aliases of that store
 
/// (but the MemoryDefs on its use list may not be).
 
///
 
/// MemoryDefs are not disambiguated because it would require multiple reaching
 
/// definitions, which would require multiple phis, and multiple memoryaccesses
 
/// per instruction.
 
///
 
/// In addition to the def/use graph described above, MemoryDefs also contain
 
/// an "optimized" definition use.  The "optimized" use points to some def
 
/// reachable through the memory def chain.  The optimized def *may* (but is
 
/// not required to) alias the original MemoryDef, but no def *closer* to the
 
/// source def may alias it.  As the name implies, the purpose of the optimized
 
/// use is to allow caching of clobber searches for memory defs.  The optimized
 
/// def may be nullptr, in which case clients must walk the defining access
 
/// chain.
 
///
 
/// When iterating the uses of a MemoryDef, both defining uses and optimized
 
/// uses will be encountered.  If only one type is needed, the client must
 
/// filter the use walk.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_MEMORYSSA_H
 
#define LLVM_ANALYSIS_MEMORYSSA_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/ilist_node.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Analysis/AliasAnalysis.h"
 
#include "llvm/Analysis/MemoryLocation.h"
 
#include "llvm/Analysis/PHITransAddr.h"
 
#include "llvm/IR/DerivedUser.h"
 
#include "llvm/IR/Dominators.h"
 
#include "llvm/IR/Type.h"
 
#include "llvm/IR/User.h"
 
#include "llvm/Pass.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
#include <memory>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
template <class GraphType> struct GraphTraits;
 
class BasicBlock;
 
class Function;
 
class Instruction;
 
class LLVMContext;
 
class MemoryAccess;
 
class MemorySSAWalker;
 
class Module;
 
class Use;
 
class Value;
 
class raw_ostream;
 
 
 
namespace MSSAHelpers {
 
 
 
struct AllAccessTag {};
 
struct DefsOnlyTag {};
 
 
 
} // end namespace MSSAHelpers
 
 
 
enum : unsigned {
 
  // Used to signify what the default invalid ID is for MemoryAccess's
 
  // getID()
 
  INVALID_MEMORYACCESS_ID = -1U
 
};
 
 
 
template <class T> class memoryaccess_def_iterator_base;
 
using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
 
using const_memoryaccess_def_iterator =
 
    memoryaccess_def_iterator_base<const MemoryAccess>;
 
 
 
// The base for all memory accesses. All memory accesses in a block are
 
// linked together using an intrusive list.
 
class MemoryAccess
 
    : public DerivedUser,
 
      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
 
      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
 
public:
 
  using AllAccessType =
 
      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
 
  using DefsOnlyType =
 
      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
 
 
 
  MemoryAccess(const MemoryAccess &) = delete;
 
  MemoryAccess &operator=(const MemoryAccess &) = delete;
 
 
 
  void *operator new(size_t) = delete;
 
 
 
  // Methods for support type inquiry through isa, cast, and
 
  // dyn_cast
 
  static bool classof(const Value *V) {
 
    unsigned ID = V->getValueID();
 
    return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
 
  }
 
 
 
  BasicBlock *getBlock() const { return Block; }
 
 
 
  void print(raw_ostream &OS) const;
 
  void dump() const;
 
 
 
  /// The user iterators for a memory access
 
  using iterator = user_iterator;
 
  using const_iterator = const_user_iterator;
 
 
 
  /// This iterator walks over all of the defs in a given
 
  /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
 
  /// MemoryUse/MemoryDef, this walks the defining access.
 
  memoryaccess_def_iterator defs_begin();
 
  const_memoryaccess_def_iterator defs_begin() const;
 
  memoryaccess_def_iterator defs_end();
 
  const_memoryaccess_def_iterator defs_end() const;
 
 
 
  /// Get the iterators for the all access list and the defs only list
 
  /// We default to the all access list.
 
  AllAccessType::self_iterator getIterator() {
 
    return this->AllAccessType::getIterator();
 
  }
 
  AllAccessType::const_self_iterator getIterator() const {
 
    return this->AllAccessType::getIterator();
 
  }
 
  AllAccessType::reverse_self_iterator getReverseIterator() {
 
    return this->AllAccessType::getReverseIterator();
 
  }
 
  AllAccessType::const_reverse_self_iterator getReverseIterator() const {
 
    return this->AllAccessType::getReverseIterator();
 
  }
 
  DefsOnlyType::self_iterator getDefsIterator() {
 
    return this->DefsOnlyType::getIterator();
 
  }
 
  DefsOnlyType::const_self_iterator getDefsIterator() const {
 
    return this->DefsOnlyType::getIterator();
 
  }
 
  DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
 
    return this->DefsOnlyType::getReverseIterator();
 
  }
 
  DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
 
    return this->DefsOnlyType::getReverseIterator();
 
  }
 
 
 
protected:
 
  friend class MemoryDef;
 
  friend class MemoryPhi;
 
  friend class MemorySSA;
 
  friend class MemoryUse;
 
  friend class MemoryUseOrDef;
 
 
 
  /// Used by MemorySSA to change the block of a MemoryAccess when it is
 
  /// moved.
 
  void setBlock(BasicBlock *BB) { Block = BB; }
 
 
 
  /// Used for debugging and tracking things about MemoryAccesses.
 
  /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
 
  inline unsigned getID() const;
 
 
 
  MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
 
               BasicBlock *BB, unsigned NumOperands)
 
      : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
 
        Block(BB) {}
 
 
 
  // Use deleteValue() to delete a generic MemoryAccess.
 
  ~MemoryAccess() = default;
 
 
 
private:
 
  BasicBlock *Block;
 
};
 
 
 
template <>
 
struct ilist_alloc_traits<MemoryAccess> {
 
  static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
 
};
 
 
 
inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
 
  MA.print(OS);
 
  return OS;
 
}
 
 
 
/// Class that has the common methods + fields of memory uses/defs. It's
 
/// a little awkward to have, but there are many cases where we want either a
 
/// use or def, and there are many cases where uses are needed (defs aren't
 
/// acceptable), and vice-versa.
 
///
 
/// This class should never be instantiated directly; make a MemoryUse or
 
/// MemoryDef instead.
 
class MemoryUseOrDef : public MemoryAccess {
 
public:
 
  void *operator new(size_t) = delete;
 
 
 
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
 
 
 
  /// Get the instruction that this MemoryUse represents.
 
  Instruction *getMemoryInst() const { return MemoryInstruction; }
 
 
 
  /// Get the access that produces the memory state used by this Use.
 
  MemoryAccess *getDefiningAccess() const { return getOperand(0); }
 
 
 
  static bool classof(const Value *MA) {
 
    return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
 
  }
 
 
 
  /// Do we have an optimized use?
 
  inline bool isOptimized() const;
 
  /// Return the MemoryAccess associated with the optimized use, or nullptr.
 
  inline MemoryAccess *getOptimized() const;
 
  /// Sets the optimized use for a MemoryDef.
 
  inline void setOptimized(MemoryAccess *);
 
 
 
  /// Reset the ID of what this MemoryUse was optimized to, causing it to
 
  /// be rewalked by the walker if necessary.
 
  /// This really should only be called by tests.
 
  inline void resetOptimized();
 
 
 
protected:
 
  friend class MemorySSA;
 
  friend class MemorySSAUpdater;
 
 
 
  MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
 
                 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
 
                 unsigned NumOperands)
 
      : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
 
        MemoryInstruction(MI) {
 
    setDefiningAccess(DMA);
 
  }
 
 
 
  // Use deleteValue() to delete a generic MemoryUseOrDef.
 
  ~MemoryUseOrDef() = default;
 
 
 
  void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false) {
 
    if (!Optimized) {
 
      setOperand(0, DMA);
 
      return;
 
    }
 
    setOptimized(DMA);
 
  }
 
 
 
private:
 
  Instruction *MemoryInstruction;
 
};
 
 
 
/// Represents read-only accesses to memory
 
///
 
/// In particular, the set of Instructions that will be represented by
 
/// MemoryUse's is exactly the set of Instructions for which
 
/// AliasAnalysis::getModRefInfo returns "Ref".
 
class MemoryUse final : public MemoryUseOrDef {
 
public:
 
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
 
 
 
  MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
 
      : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
 
                       /*NumOperands=*/1) {}
 
 
 
  // allocate space for exactly one operand
 
  void *operator new(size_t S) { return User::operator new(S, 1); }
 
  void operator delete(void *Ptr) { User::operator delete(Ptr); }
 
 
 
  static bool classof(const Value *MA) {
 
    return MA->getValueID() == MemoryUseVal;
 
  }
 
 
 
  void print(raw_ostream &OS) const;
 
 
 
  void setOptimized(MemoryAccess *DMA) {
 
    OptimizedID = DMA->getID();
 
    setOperand(0, DMA);
 
  }
 
 
 
  /// Whether the MemoryUse is optimized. If ensureOptimizedUses() was called,
 
  /// uses will usually be optimized, but this is not guaranteed (e.g. due to
 
  /// invalidation and optimization limits.)
 
  bool isOptimized() const {
 
    return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
 
  }
 
 
 
  MemoryAccess *getOptimized() const {
 
    return getDefiningAccess();
 
  }
 
 
 
  void resetOptimized() {
 
    OptimizedID = INVALID_MEMORYACCESS_ID;
 
  }
 
 
 
protected:
 
  friend class MemorySSA;
 
 
 
private:
 
  static void deleteMe(DerivedUser *Self);
 
 
 
  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
 
};
 
 
 
template <>
 
struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
 
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
 
 
 
/// Represents a read-write access to memory, whether it is a must-alias,
 
/// or a may-alias.
 
///
 
/// In particular, the set of Instructions that will be represented by
 
/// MemoryDef's is exactly the set of Instructions for which
 
/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
 
/// Note that, in order to provide def-def chains, all defs also have a use
 
/// associated with them. This use points to the nearest reaching
 
/// MemoryDef/MemoryPhi.
 
class MemoryDef final : public MemoryUseOrDef {
 
public:
 
  friend class MemorySSA;
 
 
 
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
 
 
 
  MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
 
            unsigned Ver)
 
      : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
 
                       /*NumOperands=*/2),
 
        ID(Ver) {}
 
 
 
  // allocate space for exactly two operands
 
  void *operator new(size_t S) { return User::operator new(S, 2); }
 
  void operator delete(void *Ptr) { User::operator delete(Ptr); }
 
 
 
  static bool classof(const Value *MA) {
 
    return MA->getValueID() == MemoryDefVal;
 
  }
 
 
 
  void setOptimized(MemoryAccess *MA) {
 
    setOperand(1, MA);
 
    OptimizedID = MA->getID();
 
  }
 
 
 
  MemoryAccess *getOptimized() const {
 
    return cast_or_null<MemoryAccess>(getOperand(1));
 
  }
 
 
 
  bool isOptimized() const {
 
    return getOptimized() && OptimizedID == getOptimized()->getID();
 
  }
 
 
 
  void resetOptimized() {
 
    OptimizedID = INVALID_MEMORYACCESS_ID;
 
    setOperand(1, nullptr);
 
  }
 
 
 
  void print(raw_ostream &OS) const;
 
 
 
  unsigned getID() const { return ID; }
 
 
 
private:
 
  static void deleteMe(DerivedUser *Self);
 
 
 
  const unsigned ID;
 
  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
 
};
 
 
 
template <>
 
struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
 
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
 
 
 
template <>
 
struct OperandTraits<MemoryUseOrDef> {
 
  static Use *op_begin(MemoryUseOrDef *MUD) {
 
    if (auto *MU = dyn_cast<MemoryUse>(MUD))
 
      return OperandTraits<MemoryUse>::op_begin(MU);
 
    return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
 
  }
 
 
 
  static Use *op_end(MemoryUseOrDef *MUD) {
 
    if (auto *MU = dyn_cast<MemoryUse>(MUD))
 
      return OperandTraits<MemoryUse>::op_end(MU);
 
    return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
 
  }
 
 
 
  static unsigned operands(const MemoryUseOrDef *MUD) {
 
    if (const auto *MU = dyn_cast<MemoryUse>(MUD))
 
      return OperandTraits<MemoryUse>::operands(MU);
 
    return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
 
  }
 
};
 
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
 
 
 
/// Represents phi nodes for memory accesses.
 
///
 
/// These have the same semantic as regular phi nodes, with the exception that
 
/// only one phi will ever exist in a given basic block.
 
/// Guaranteeing one phi per block means guaranteeing there is only ever one
 
/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
 
/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
 
/// a MemoryPhi's operands.
 
/// That is, given
 
/// if (a) {
 
///   store %a
 
///   store %b
 
/// }
 
/// it *must* be transformed into
 
/// if (a) {
 
///    1 = MemoryDef(liveOnEntry)
 
///    store %a
 
///    2 = MemoryDef(1)
 
///    store %b
 
/// }
 
/// and *not*
 
/// if (a) {
 
///    1 = MemoryDef(liveOnEntry)
 
///    store %a
 
///    2 = MemoryDef(liveOnEntry)
 
///    store %b
 
/// }
 
/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
 
/// end of the branch, and if there are not two phi nodes, one will be
 
/// disconnected completely from the SSA graph below that point.
 
/// Because MemoryUse's do not generate new definitions, they do not have this
 
/// issue.
 
class MemoryPhi final : public MemoryAccess {
 
  // allocate space for exactly zero operands
 
  void *operator new(size_t S) { return User::operator new(S); }
 
 
 
public:
 
  void operator delete(void *Ptr) { User::operator delete(Ptr); }
 
 
 
  /// Provide fast operand accessors
 
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
 
 
 
  MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
 
      : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
 
        ReservedSpace(NumPreds) {
 
    allocHungoffUses(ReservedSpace);
 
  }
 
 
 
  // Block iterator interface. This provides access to the list of incoming
 
  // basic blocks, which parallels the list of incoming values.
 
  using block_iterator = BasicBlock **;
 
  using const_block_iterator = BasicBlock *const *;
 
 
 
  block_iterator block_begin() {
 
    return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
 
  }
 
 
 
  const_block_iterator block_begin() const {
 
    return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
 
  }
 
 
 
  block_iterator block_end() { return block_begin() + getNumOperands(); }
 
 
 
  const_block_iterator block_end() const {
 
    return block_begin() + getNumOperands();
 
  }
 
 
 
  iterator_range<block_iterator> blocks() {
 
    return make_range(block_begin(), block_end());
 
  }
 
 
 
  iterator_range<const_block_iterator> blocks() const {
 
    return make_range(block_begin(), block_end());
 
  }
 
 
 
  op_range incoming_values() { return operands(); }
 
 
 
  const_op_range incoming_values() const { return operands(); }
 
 
 
  /// Return the number of incoming edges
 
  unsigned getNumIncomingValues() const { return getNumOperands(); }
 
 
 
  /// Return incoming value number x
 
  MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
 
  void setIncomingValue(unsigned I, MemoryAccess *V) {
 
    assert(V && "PHI node got a null value!");
 
    setOperand(I, V);
 
  }
 
 
 
  static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
 
  static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
 
 
 
  /// Return incoming basic block number @p i.
 
  BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
 
 
 
  /// Return incoming basic block corresponding
 
  /// to an operand of the PHI.
 
  BasicBlock *getIncomingBlock(const Use &U) const {
 
    assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
 
    return getIncomingBlock(unsigned(&U - op_begin()));
 
  }
 
 
 
  /// Return incoming basic block corresponding
 
  /// to value use iterator.
 
  BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
 
    return getIncomingBlock(I.getUse());
 
  }
 
 
 
  void setIncomingBlock(unsigned I, BasicBlock *BB) {
 
    assert(BB && "PHI node got a null basic block!");
 
    block_begin()[I] = BB;
 
  }
 
 
 
  /// Add an incoming value to the end of the PHI list
 
  void addIncoming(MemoryAccess *V, BasicBlock *BB) {
 
    if (getNumOperands() == ReservedSpace)
 
      growOperands(); // Get more space!
 
    // Initialize some new operands.
 
    setNumHungOffUseOperands(getNumOperands() + 1);
 
    setIncomingValue(getNumOperands() - 1, V);
 
    setIncomingBlock(getNumOperands() - 1, BB);
 
  }
 
 
 
  /// Return the first index of the specified basic
 
  /// block in the value list for this PHI.  Returns -1 if no instance.
 
  int getBasicBlockIndex(const BasicBlock *BB) const {
 
    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
 
      if (block_begin()[I] == BB)
 
        return I;
 
    return -1;
 
  }
 
 
 
  MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
 
    int Idx = getBasicBlockIndex(BB);
 
    assert(Idx >= 0 && "Invalid basic block argument!");
 
    return getIncomingValue(Idx);
 
  }
 
 
 
  // After deleting incoming position I, the order of incoming may be changed.
 
  void unorderedDeleteIncoming(unsigned I) {
 
    unsigned E = getNumOperands();
 
    assert(I < E && "Cannot remove out of bounds Phi entry.");
 
    // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
 
    // itself should be deleted.
 
    assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
 
                     "at least 2 values.");
 
    setIncomingValue(I, getIncomingValue(E - 1));
 
    setIncomingBlock(I, block_begin()[E - 1]);
 
    setOperand(E - 1, nullptr);
 
    block_begin()[E - 1] = nullptr;
 
    setNumHungOffUseOperands(getNumOperands() - 1);
 
  }
 
 
 
  // After deleting entries that satisfy Pred, remaining entries may have
 
  // changed order.
 
  template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
 
    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
 
      if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
 
        unorderedDeleteIncoming(I);
 
        E = getNumOperands();
 
        --I;
 
      }
 
    assert(getNumOperands() >= 1 &&
 
           "Cannot remove all incoming blocks in a MemoryPhi.");
 
  }
 
 
 
  // After deleting incoming block BB, the incoming blocks order may be changed.
 
  void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
 
    unorderedDeleteIncomingIf(
 
        [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
 
  }
 
 
 
  // After deleting incoming memory access MA, the incoming accesses order may
 
  // be changed.
 
  void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
 
    unorderedDeleteIncomingIf(
 
        [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
 
  }
 
 
 
  static bool classof(const Value *V) {
 
    return V->getValueID() == MemoryPhiVal;
 
  }
 
 
 
  void print(raw_ostream &OS) const;
 
 
 
  unsigned getID() const { return ID; }
 
 
 
protected:
 
  friend class MemorySSA;
 
 
 
  /// this is more complicated than the generic
 
  /// User::allocHungoffUses, because we have to allocate Uses for the incoming
 
  /// values and pointers to the incoming blocks, all in one allocation.
 
  void allocHungoffUses(unsigned N) {
 
    User::allocHungoffUses(N, /* IsPhi */ true);
 
  }
 
 
 
private:
 
  // For debugging only
 
  const unsigned ID;
 
  unsigned ReservedSpace;
 
 
 
  /// This grows the operand list in response to a push_back style of
 
  /// operation.  This grows the number of ops by 1.5 times.
 
  void growOperands() {
 
    unsigned E = getNumOperands();
 
    // 2 op PHI nodes are VERY common, so reserve at least enough for that.
 
    ReservedSpace = std::max(E + E / 2, 2u);
 
    growHungoffUses(ReservedSpace, /* IsPhi */ true);
 
  }
 
 
 
  static void deleteMe(DerivedUser *Self);
 
};
 
 
 
inline unsigned MemoryAccess::getID() const {
 
  assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
 
         "only memory defs and phis have ids");
 
  if (const auto *MD = dyn_cast<MemoryDef>(this))
 
    return MD->getID();
 
  return cast<MemoryPhi>(this)->getID();
 
}
 
 
 
inline bool MemoryUseOrDef::isOptimized() const {
 
  if (const auto *MD = dyn_cast<MemoryDef>(this))
 
    return MD->isOptimized();
 
  return cast<MemoryUse>(this)->isOptimized();
 
}
 
 
 
inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
 
  if (const auto *MD = dyn_cast<MemoryDef>(this))
 
    return MD->getOptimized();
 
  return cast<MemoryUse>(this)->getOptimized();
 
}
 
 
 
inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
 
  if (auto *MD = dyn_cast<MemoryDef>(this))
 
    MD->setOptimized(MA);
 
  else
 
    cast<MemoryUse>(this)->setOptimized(MA);
 
}
 
 
 
inline void MemoryUseOrDef::resetOptimized() {
 
  if (auto *MD = dyn_cast<MemoryDef>(this))
 
    MD->resetOptimized();
 
  else
 
    cast<MemoryUse>(this)->resetOptimized();
 
}
 
 
 
template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
 
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
 
 
 
/// Encapsulates MemorySSA, including all data associated with memory
 
/// accesses.
 
class MemorySSA {
 
public:
 
  MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
 
 
 
  // MemorySSA must remain where it's constructed; Walkers it creates store
 
  // pointers to it.
 
  MemorySSA(MemorySSA &&) = delete;
 
 
 
  ~MemorySSA();
 
 
 
  MemorySSAWalker *getWalker();
 
  MemorySSAWalker *getSkipSelfWalker();
 
 
 
  /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
 
  /// access associated with it. If passed a basic block gets the memory phi
 
  /// node that exists for that block, if there is one. Otherwise, this will get
 
  /// a MemoryUseOrDef.
 
  MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
 
    return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
 
  }
 
 
 
  MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
 
    return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
 
  }
 
 
 
  DominatorTree &getDomTree() const { return *DT; }
 
 
 
  void dump() const;
 
  void print(raw_ostream &) const;
 
 
 
  /// Return true if \p MA represents the live on entry value
 
  ///
 
  /// Loads and stores from pointer arguments and other global values may be
 
  /// defined by memory operations that do not occur in the current function, so
 
  /// they may be live on entry to the function. MemorySSA represents such
 
  /// memory state by the live on entry definition, which is guaranteed to occur
 
  /// before any other memory access in the function.
 
  inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
 
    return MA == LiveOnEntryDef.get();
 
  }
 
 
 
  inline MemoryAccess *getLiveOnEntryDef() const {
 
    return LiveOnEntryDef.get();
 
  }
 
 
 
  // Sadly, iplists, by default, owns and deletes pointers added to the
 
  // list. It's not currently possible to have two iplists for the same type,
 
  // where one owns the pointers, and one does not. This is because the traits
 
  // are per-type, not per-tag.  If this ever changes, we should make the
 
  // DefList an iplist.
 
  using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
 
  using DefsList =
 
      simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
 
 
 
  /// Return the list of MemoryAccess's for a given basic block.
 
  ///
 
  /// This list is not modifiable by the user.
 
  const AccessList *getBlockAccesses(const BasicBlock *BB) const {
 
    return getWritableBlockAccesses(BB);
 
  }
 
 
 
  /// Return the list of MemoryDef's and MemoryPhi's for a given basic
 
  /// block.
 
  ///
 
  /// This list is not modifiable by the user.
 
  const DefsList *getBlockDefs(const BasicBlock *BB) const {
 
    return getWritableBlockDefs(BB);
 
  }
 
 
 
  /// Given two memory accesses in the same basic block, determine
 
  /// whether MemoryAccess \p A dominates MemoryAccess \p B.
 
  bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
 
 
 
  /// Given two memory accesses in potentially different blocks,
 
  /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
 
  bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
 
 
 
  /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
 
  /// dominates Use \p B.
 
  bool dominates(const MemoryAccess *A, const Use &B) const;
 
 
 
  enum class VerificationLevel { Fast, Full };
 
  /// Verify that MemorySSA is self consistent (IE definitions dominate
 
  /// all uses, uses appear in the right places).  This is used by unit tests.
 
  void verifyMemorySSA(VerificationLevel = VerificationLevel::Fast) const;
 
 
 
  /// Used in various insertion functions to specify whether we are talking
 
  /// about the beginning or end of a block.
 
  enum InsertionPlace { Beginning, End, BeforeTerminator };
 
 
 
  /// By default, uses are *not* optimized during MemorySSA construction.
 
  /// Calling this method will attempt to optimize all MemoryUses, if this has
 
  /// not happened yet for this MemorySSA instance. This should be done if you
 
  /// plan to query the clobbering access for most uses, or if you walk the
 
  /// def-use chain of uses.
 
  void ensureOptimizedUses();
 
 
 
  AliasAnalysis &getAA() { return *AA; }
 
 
 
protected:
 
  // Used by Memory SSA dumpers and wrapper pass
 
  friend class MemorySSAPrinterLegacyPass;
 
  friend class MemorySSAUpdater;
 
 
 
  void verifyOrderingDominationAndDefUses(
 
      Function &F, VerificationLevel = VerificationLevel::Fast) const;
 
  void verifyDominationNumbers(const Function &F) const;
 
  void verifyPrevDefInPhis(Function &F) const;
 
 
 
  // This is used by the use optimizer and updater.
 
  AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
 
    auto It = PerBlockAccesses.find(BB);
 
    return It == PerBlockAccesses.end() ? nullptr : It->second.get();
 
  }
 
 
 
  // This is used by the use optimizer and updater.
 
  DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
 
    auto It = PerBlockDefs.find(BB);
 
    return It == PerBlockDefs.end() ? nullptr : It->second.get();
 
  }
 
 
 
  // These is used by the updater to perform various internal MemorySSA
 
  // machinsations.  They do not always leave the IR in a correct state, and
 
  // relies on the updater to fixup what it breaks, so it is not public.
 
 
 
  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
 
  void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
 
 
 
  // Rename the dominator tree branch rooted at BB.
 
  void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
 
                  SmallPtrSetImpl<BasicBlock *> &Visited) {
 
    renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
 
  }
 
 
 
  void removeFromLookups(MemoryAccess *);
 
  void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
 
  void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
 
                               InsertionPlace);
 
  void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
 
                             AccessList::iterator);
 
  MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
 
                                      const MemoryUseOrDef *Template = nullptr,
 
                                      bool CreationMustSucceed = true);
 
 
 
private:
 
  class ClobberWalkerBase;
 
  class CachingWalker;
 
  class SkipSelfWalker;
 
  class OptimizeUses;
 
 
 
  CachingWalker *getWalkerImpl();
 
  void buildMemorySSA(BatchAAResults &BAA);
 
 
 
  void prepareForMoveTo(MemoryAccess *, BasicBlock *);
 
  void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
 
 
 
  using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
 
  using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
 
 
 
  void markUnreachableAsLiveOnEntry(BasicBlock *BB);
 
  MemoryPhi *createMemoryPhi(BasicBlock *BB);
 
  template <typename AliasAnalysisType>
 
  MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
 
                                  const MemoryUseOrDef *Template = nullptr);
 
  void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
 
  MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
 
  void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
 
  void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
 
                  SmallPtrSetImpl<BasicBlock *> &Visited,
 
                  bool SkipVisited = false, bool RenameAllUses = false);
 
  AccessList *getOrCreateAccessList(const BasicBlock *);
 
  DefsList *getOrCreateDefsList(const BasicBlock *);
 
  void renumberBlock(const BasicBlock *) const;
 
  AliasAnalysis *AA = nullptr;
 
  DominatorTree *DT;
 
  Function &F;
 
 
 
  // Memory SSA mappings
 
  DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
 
 
 
  // These two mappings contain the main block to access/def mappings for
 
  // MemorySSA. The list contained in PerBlockAccesses really owns all the
 
  // MemoryAccesses.
 
  // Both maps maintain the invariant that if a block is found in them, the
 
  // corresponding list is not empty, and if a block is not found in them, the
 
  // corresponding list is empty.
 
  AccessMap PerBlockAccesses;
 
  DefsMap PerBlockDefs;
 
  std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
 
 
 
  // Domination mappings
 
  // Note that the numbering is local to a block, even though the map is
 
  // global.
 
  mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
 
  mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
 
 
 
  // Memory SSA building info
 
  std::unique_ptr<ClobberWalkerBase> WalkerBase;
 
  std::unique_ptr<CachingWalker> Walker;
 
  std::unique_ptr<SkipSelfWalker> SkipWalker;
 
  unsigned NextID = 0;
 
  bool IsOptimized = false;
 
};
 
 
 
/// Enables verification of MemorySSA.
 
///
 
/// The checks which this flag enables is exensive and disabled by default
 
/// unless `EXPENSIVE_CHECKS` is defined.  The flag `-verify-memoryssa` can be
 
/// used to selectively enable the verification without re-compilation.
 
extern bool VerifyMemorySSA;
 
 
 
// Internal MemorySSA utils, for use by MemorySSA classes and walkers
 
class MemorySSAUtil {
 
protected:
 
  friend class GVNHoist;
 
  friend class MemorySSAWalker;
 
 
 
  // This function should not be used by new passes.
 
  static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
 
                                  AliasAnalysis &AA);
 
};
 
 
 
// This pass does eager building and then printing of MemorySSA. It is used by
 
// the tests to be able to build, dump, and verify Memory SSA.
 
class MemorySSAPrinterLegacyPass : public FunctionPass {
 
public:
 
  MemorySSAPrinterLegacyPass();
 
 
 
  bool runOnFunction(Function &) override;
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
 
 
  static char ID;
 
};
 
 
 
/// An analysis that produces \c MemorySSA for a function.
 
///
 
class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
 
  friend AnalysisInfoMixin<MemorySSAAnalysis>;
 
 
 
  static AnalysisKey Key;
 
 
 
public:
 
  // Wrap MemorySSA result to ensure address stability of internal MemorySSA
 
  // pointers after construction.  Use a wrapper class instead of plain
 
  // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
 
  struct Result {
 
    Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
 
 
 
    MemorySSA &getMSSA() { return *MSSA.get(); }
 
 
 
    std::unique_ptr<MemorySSA> MSSA;
 
 
 
    bool invalidate(Function &F, const PreservedAnalyses &PA,
 
                    FunctionAnalysisManager::Invalidator &Inv);
 
  };
 
 
 
  Result run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Printer pass for \c MemorySSA.
 
class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
 
  raw_ostream &OS;
 
 
 
public:
 
  explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
 
 
 
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Printer pass for \c MemorySSA via the walker.
 
class MemorySSAWalkerPrinterPass
 
    : public PassInfoMixin<MemorySSAWalkerPrinterPass> {
 
  raw_ostream &OS;
 
 
 
public:
 
  explicit MemorySSAWalkerPrinterPass(raw_ostream &OS) : OS(OS) {}
 
 
 
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Verifier pass for \c MemorySSA.
 
struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
 
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Legacy analysis pass which computes \c MemorySSA.
 
class MemorySSAWrapperPass : public FunctionPass {
 
public:
 
  MemorySSAWrapperPass();
 
 
 
  static char ID;
 
 
 
  bool runOnFunction(Function &) override;
 
  void releaseMemory() override;
 
  MemorySSA &getMSSA() { return *MSSA; }
 
  const MemorySSA &getMSSA() const { return *MSSA; }
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
 
 
  void verifyAnalysis() const override;
 
  void print(raw_ostream &OS, const Module *M = nullptr) const override;
 
 
 
private:
 
  std::unique_ptr<MemorySSA> MSSA;
 
};
 
 
 
/// This is the generic walker interface for walkers of MemorySSA.
 
/// Walkers are used to be able to further disambiguate the def-use chains
 
/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
 
/// you.
 
/// In particular, while the def-use chains provide basic information, and are
 
/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
 
/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
 
/// information. In particular, they may want to use SCEV info to further
 
/// disambiguate memory accesses, or they may want the nearest dominating
 
/// may-aliasing MemoryDef for a call or a store. This API enables a
 
/// standardized interface to getting and using that info.
 
class MemorySSAWalker {
 
public:
 
  MemorySSAWalker(MemorySSA *);
 
  virtual ~MemorySSAWalker() = default;
 
 
 
  using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
 
 
 
  /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
 
  /// will give you the nearest dominating MemoryAccess that Mod's the location
 
  /// the instruction accesses (by skipping any def which AA can prove does not
 
  /// alias the location(s) accessed by the instruction given).
 
  ///
 
  /// Note that this will return a single access, and it must dominate the
 
  /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
 
  /// this will return the MemoryPhi, not the operand. This means that
 
  /// given:
 
  /// if (a) {
 
  ///   1 = MemoryDef(liveOnEntry)
 
  ///   store %a
 
  /// } else {
 
  ///   2 = MemoryDef(liveOnEntry)
 
  ///   store %b
 
  /// }
 
  /// 3 = MemoryPhi(2, 1)
 
  /// MemoryUse(3)
 
  /// load %a
 
  ///
 
  /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
 
  /// in the if (a) branch.
 
  MemoryAccess *getClobberingMemoryAccess(const Instruction *I,
 
                                          BatchAAResults &AA) {
 
    MemoryAccess *MA = MSSA->getMemoryAccess(I);
 
    assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
 
    return getClobberingMemoryAccess(MA, AA);
 
  }
 
 
 
  /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
 
  /// but takes a MemoryAccess instead of an Instruction.
 
  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
 
                                                  BatchAAResults &AA) = 0;
 
 
 
  /// Given a potentially clobbering memory access and a new location,
 
  /// calling this will give you the nearest dominating clobbering MemoryAccess
 
  /// (by skipping non-aliasing def links).
 
  ///
 
  /// This version of the function is mainly used to disambiguate phi translated
 
  /// pointers, where the value of a pointer may have changed from the initial
 
  /// memory access. Note that this expects to be handed either a MemoryUse,
 
  /// or an already potentially clobbering access. Unlike the above API, if
 
  /// given a MemoryDef that clobbers the pointer as the starting access, it
 
  /// will return that MemoryDef, whereas the above would return the clobber
 
  /// starting from the use side of  the memory def.
 
  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
 
                                                  const MemoryLocation &,
 
                                                  BatchAAResults &AA) = 0;
 
 
 
  MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
 
    BatchAAResults BAA(MSSA->getAA());
 
    return getClobberingMemoryAccess(I, BAA);
 
  }
 
 
 
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) {
 
    BatchAAResults BAA(MSSA->getAA());
 
    return getClobberingMemoryAccess(MA, BAA);
 
  }
 
 
 
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
 
                                          const MemoryLocation &Loc) {
 
    BatchAAResults BAA(MSSA->getAA());
 
    return getClobberingMemoryAccess(MA, Loc, BAA);
 
  }
 
 
 
  /// Given a memory access, invalidate anything this walker knows about
 
  /// that access.
 
  /// This API is used by walkers that store information to perform basic cache
 
  /// invalidation.  This will be called by MemorySSA at appropriate times for
 
  /// the walker it uses or returns.
 
  virtual void invalidateInfo(MemoryAccess *) {}
 
 
 
protected:
 
  friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
 
                          // constructor.
 
  MemorySSA *MSSA;
 
};
 
 
 
/// A MemorySSAWalker that does no alias queries, or anything else. It
 
/// simply returns the links as they were constructed by the builder.
 
class DoNothingMemorySSAWalker final : public MemorySSAWalker {
 
public:
 
  // Keep the overrides below from hiding the Instruction overload of
 
  // getClobberingMemoryAccess.
 
  using MemorySSAWalker::getClobberingMemoryAccess;
 
 
 
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
 
                                          BatchAAResults &) override;
 
  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
 
                                          const MemoryLocation &,
 
                                          BatchAAResults &) override;
 
};
 
 
 
using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
 
using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
 
 
 
/// Iterator base class used to implement const and non-const iterators
 
/// over the defining accesses of a MemoryAccess.
 
template <class T>
 
class memoryaccess_def_iterator_base
 
    : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
 
                                  std::forward_iterator_tag, T, ptrdiff_t, T *,
 
                                  T *> {
 
  using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
 
 
 
public:
 
  memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
 
  memoryaccess_def_iterator_base() = default;
 
 
 
  bool operator==(const memoryaccess_def_iterator_base &Other) const {
 
    return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
 
  }
 
 
 
  // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
 
  // block from the operand in constant time (In a PHINode, the uselist has
 
  // both, so it's just subtraction). We provide it as part of the
 
  // iterator to avoid callers having to linear walk to get the block.
 
  // If the operation becomes constant time on MemoryPHI's, this bit of
 
  // abstraction breaking should be removed.
 
  BasicBlock *getPhiArgBlock() const {
 
    MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
 
    assert(MP && "Tried to get phi arg block when not iterating over a PHI");
 
    return MP->getIncomingBlock(ArgNo);
 
  }
 
 
 
  typename std::iterator_traits<BaseT>::pointer operator*() const {
 
    assert(Access && "Tried to access past the end of our iterator");
 
    // Go to the first argument for phis, and the defining access for everything
 
    // else.
 
    if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
 
      return MP->getIncomingValue(ArgNo);
 
    return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
 
  }
 
 
 
  using BaseT::operator++;
 
  memoryaccess_def_iterator_base &operator++() {
 
    assert(Access && "Hit end of iterator");
 
    if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
 
      if (++ArgNo >= MP->getNumIncomingValues()) {
 
        ArgNo = 0;
 
        Access = nullptr;
 
      }
 
    } else {
 
      Access = nullptr;
 
    }
 
    return *this;
 
  }
 
 
 
private:
 
  T *Access = nullptr;
 
  unsigned ArgNo = 0;
 
};
 
 
 
inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
 
  return memoryaccess_def_iterator(this);
 
}
 
 
 
inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
 
  return const_memoryaccess_def_iterator(this);
 
}
 
 
 
inline memoryaccess_def_iterator MemoryAccess::defs_end() {
 
  return memoryaccess_def_iterator();
 
}
 
 
 
inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
 
  return const_memoryaccess_def_iterator();
 
}
 
 
 
/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
 
/// and uses in the inverse case.
 
template <> struct GraphTraits<MemoryAccess *> {
 
  using NodeRef = MemoryAccess *;
 
  using ChildIteratorType = memoryaccess_def_iterator;
 
 
 
  static NodeRef getEntryNode(NodeRef N) { return N; }
 
  static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
 
  static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
 
};
 
 
 
template <> struct GraphTraits<Inverse<MemoryAccess *>> {
 
  using NodeRef = MemoryAccess *;
 
  using ChildIteratorType = MemoryAccess::iterator;
 
 
 
  static NodeRef getEntryNode(NodeRef N) { return N; }
 
  static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
 
  static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
 
};
 
 
 
/// Provide an iterator that walks defs, giving both the memory access,
 
/// and the current pointer location, updating the pointer location as it
 
/// changes due to phi node translation.
 
///
 
/// This iterator, while somewhat specialized, is what most clients actually
 
/// want when walking upwards through MemorySSA def chains. It takes a pair of
 
/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
 
/// memory location through phi nodes for the user.
 
class upward_defs_iterator
 
    : public iterator_facade_base<upward_defs_iterator,
 
                                  std::forward_iterator_tag,
 
                                  const MemoryAccessPair> {
 
  using BaseT = upward_defs_iterator::iterator_facade_base;
 
 
 
public:
 
  upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT)
 
      : DefIterator(Info.first), Location(Info.second),
 
        OriginalAccess(Info.first), DT(DT) {
 
    CurrentPair.first = nullptr;
 
 
 
    WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
 
    fillInCurrentPair();
 
  }
 
 
 
  upward_defs_iterator() { CurrentPair.first = nullptr; }
 
 
 
  bool operator==(const upward_defs_iterator &Other) const {
 
    return DefIterator == Other.DefIterator;
 
  }
 
 
 
  typename std::iterator_traits<BaseT>::reference operator*() const {
 
    assert(DefIterator != OriginalAccess->defs_end() &&
 
           "Tried to access past the end of our iterator");
 
    return CurrentPair;
 
  }
 
 
 
  using BaseT::operator++;
 
  upward_defs_iterator &operator++() {
 
    assert(DefIterator != OriginalAccess->defs_end() &&
 
           "Tried to access past the end of the iterator");
 
    ++DefIterator;
 
    if (DefIterator != OriginalAccess->defs_end())
 
      fillInCurrentPair();
 
    return *this;
 
  }
 
 
 
  BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
 
 
 
private:
 
  /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
 
  /// loop. In particular, this guarantees that it only references a single
 
  /// MemoryLocation during execution of the containing function.
 
  bool IsGuaranteedLoopInvariant(const Value *Ptr) const;
 
 
 
  void fillInCurrentPair() {
 
    CurrentPair.first = *DefIterator;
 
    CurrentPair.second = Location;
 
    if (WalkingPhi && Location.Ptr) {
 
      PHITransAddr Translator(
 
          const_cast<Value *>(Location.Ptr),
 
          OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
 
 
 
      if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
 
                                        DefIterator.getPhiArgBlock(), DT, true))
 
        if (Translator.getAddr() != CurrentPair.second.Ptr)
 
          CurrentPair.second =
 
              CurrentPair.second.getWithNewPtr(Translator.getAddr());
 
 
 
      // Mark size as unknown, if the location is not guaranteed to be
 
      // loop-invariant for any possible loop in the function. Setting the size
 
      // to unknown guarantees that any memory accesses that access locations
 
      // after the pointer are considered as clobbers, which is important to
 
      // catch loop carried dependences.
 
      if (!IsGuaranteedLoopInvariant(CurrentPair.second.Ptr))
 
        CurrentPair.second = CurrentPair.second.getWithNewSize(
 
            LocationSize::beforeOrAfterPointer());
 
    }
 
  }
 
 
 
  MemoryAccessPair CurrentPair;
 
  memoryaccess_def_iterator DefIterator;
 
  MemoryLocation Location;
 
  MemoryAccess *OriginalAccess = nullptr;
 
  DominatorTree *DT = nullptr;
 
  bool WalkingPhi = false;
 
};
 
 
 
inline upward_defs_iterator
 
upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT) {
 
  return upward_defs_iterator(Pair, &DT);
 
}
 
 
 
inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
 
 
 
inline iterator_range<upward_defs_iterator>
 
upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) {
 
  return make_range(upward_defs_begin(Pair, DT), upward_defs_end());
 
}
 
 
 
/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
 
/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
 
/// comparing against a null def_chain_iterator, this will compare equal only
 
/// after walking said Phi/liveOnEntry.
 
///
 
/// The UseOptimizedChain flag specifies whether to walk the clobbering
 
/// access chain, or all the accesses.
 
///
 
/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
 
/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
 
/// a phi node.  The optimized chain walks the clobbering access of a store.
 
/// So if you are just trying to find, given a store, what the next
 
/// thing that would clobber the same memory is, you want the optimized chain.
 
template <class T, bool UseOptimizedChain = false>
 
struct def_chain_iterator
 
    : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
 
                                  std::forward_iterator_tag, MemoryAccess *> {
 
  def_chain_iterator() : MA(nullptr) {}
 
  def_chain_iterator(T MA) : MA(MA) {}
 
 
 
  T operator*() const { return MA; }
 
 
 
  def_chain_iterator &operator++() {
 
    // N.B. liveOnEntry has a null defining access.
 
    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
 
      if (UseOptimizedChain && MUD->isOptimized())
 
        MA = MUD->getOptimized();
 
      else
 
        MA = MUD->getDefiningAccess();
 
    } else {
 
      MA = nullptr;
 
    }
 
 
 
    return *this;
 
  }
 
 
 
  bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
 
 
 
private:
 
  T MA;
 
};
 
 
 
template <class T>
 
inline iterator_range<def_chain_iterator<T>>
 
def_chain(T MA, MemoryAccess *UpTo = nullptr) {
 
#ifdef EXPENSIVE_CHECKS
 
  assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
 
         "UpTo isn't in the def chain!");
 
#endif
 
  return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
 
}
 
 
 
template <class T>
 
inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
 
  return make_range(def_chain_iterator<T, true>(MA),
 
                    def_chain_iterator<T, true>(nullptr));
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_MEMORYSSA_H