//===--------- LoopIterator.h - Iterate over loop blocks --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
// This file defines iterators to visit the basic blocks within a loop.
 
//
 
// These iterators currently visit blocks within subloops as well.
 
// Unfortunately we have no efficient way of summarizing loop exits which would
 
// allow skipping subloops during traversal.
 
//
 
// If you want to visit all blocks in a loop and don't need an ordered traveral,
 
// use Loop::block_begin() instead.
 
//
 
// This is intentionally designed to work with ill-formed loops in which the
 
// backedge has been deleted. The only prerequisite is that all blocks
 
// contained within the loop according to the most recent LoopInfo analysis are
 
// reachable from the loop header.
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_LOOPITERATOR_H
 
#define LLVM_ANALYSIS_LOOPITERATOR_H
 
 
 
#include "llvm/ADT/PostOrderIterator.h"
 
#include "llvm/Analysis/LoopInfo.h"
 
 
 
namespace llvm {
 
 
 
class LoopBlocksTraversal;
 
 
 
// A traits type that is intended to be used in graph algorithms. The graph
 
// traits starts at the loop header, and traverses the BasicBlocks that are in
 
// the loop body, but not the loop header. Since the loop header is skipped,
 
// the back edges are excluded.
 
//
 
// TODO: Explore the possibility to implement LoopBlocksTraversal in terms of
 
//       LoopBodyTraits, so that insertEdge doesn't have to be specialized.
 
struct LoopBodyTraits {
 
  using NodeRef = std::pair<const Loop *, BasicBlock *>;
 
 
 
  // This wraps a const Loop * into the iterator, so we know which edges to
 
  // filter out.
 
  class WrappedSuccIterator
 
      : public iterator_adaptor_base<
 
            WrappedSuccIterator, succ_iterator,
 
            typename std::iterator_traits<succ_iterator>::iterator_category,
 
            NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
 
    using BaseT = iterator_adaptor_base<
 
        WrappedSuccIterator, succ_iterator,
 
        typename std::iterator_traits<succ_iterator>::iterator_category,
 
        NodeRef, std::ptrdiff_t, NodeRef *, NodeRef>;
 
 
 
    const Loop *L;
 
 
 
  public:
 
    WrappedSuccIterator(succ_iterator Begin, const Loop *L)
 
        : BaseT(Begin), L(L) {}
 
 
 
    NodeRef operator*() const { return {L, *I}; }
 
  };
 
 
 
  struct LoopBodyFilter {
 
    bool operator()(NodeRef N) const {
 
      const Loop *L = N.first;
 
      return N.second != L->getHeader() && L->contains(N.second);
 
    }
 
  };
 
 
 
  using ChildIteratorType =
 
      filter_iterator<WrappedSuccIterator, LoopBodyFilter>;
 
 
 
  static NodeRef getEntryNode(const Loop &G) { return {&G, G.getHeader()}; }
 
 
 
  static ChildIteratorType child_begin(NodeRef Node) {
 
    return make_filter_range(make_range<WrappedSuccIterator>(
 
                                 {succ_begin(Node.second), Node.first},
 
                                 {succ_end(Node.second), Node.first}),
 
                             LoopBodyFilter{})
 
        .begin();
 
  }
 
 
 
  static ChildIteratorType child_end(NodeRef Node) {
 
    return make_filter_range(make_range<WrappedSuccIterator>(
 
                                 {succ_begin(Node.second), Node.first},
 
                                 {succ_end(Node.second), Node.first}),
 
                             LoopBodyFilter{})
 
        .end();
 
  }
 
};
 
 
 
/// Store the result of a depth first search within basic blocks contained by a
 
/// single loop.
 
///
 
/// TODO: This could be generalized for any CFG region, or the entire CFG.
 
class LoopBlocksDFS {
 
public:
 
  /// Postorder list iterators.
 
  typedef std::vector<BasicBlock*>::const_iterator POIterator;
 
  typedef std::vector<BasicBlock*>::const_reverse_iterator RPOIterator;
 
 
 
  friend class LoopBlocksTraversal;
 
 
 
private:
 
  Loop *L;
 
 
 
  /// Map each block to its postorder number. A block is only mapped after it is
 
  /// preorder visited by DFS. It's postorder number is initially zero and set
 
  /// to nonzero after it is finished by postorder traversal.
 
  DenseMap<BasicBlock*, unsigned> PostNumbers;
 
  std::vector<BasicBlock*> PostBlocks;
 
 
 
public:
 
  LoopBlocksDFS(Loop *Container) :
 
    L(Container), PostNumbers(NextPowerOf2(Container->getNumBlocks())) {
 
    PostBlocks.reserve(Container->getNumBlocks());
 
  }
 
 
 
  Loop *getLoop() const { return L; }
 
 
 
  /// Traverse the loop blocks and store the DFS result.
 
  void perform(LoopInfo *LI);
 
 
 
  /// Return true if postorder numbers are assigned to all loop blocks.
 
  bool isComplete() const { return PostBlocks.size() == L->getNumBlocks(); }
 
 
 
  /// Iterate over the cached postorder blocks.
 
  POIterator beginPostorder() const {
 
    assert(isComplete() && "bad loop DFS");
 
    return PostBlocks.begin();
 
  }
 
  POIterator endPostorder() const { return PostBlocks.end(); }
 
 
 
  /// Reverse iterate over the cached postorder blocks.
 
  RPOIterator beginRPO() const {
 
    assert(isComplete() && "bad loop DFS");
 
    return PostBlocks.rbegin();
 
  }
 
  RPOIterator endRPO() const { return PostBlocks.rend(); }
 
 
 
  /// Return true if this block has been preorder visited.
 
  bool hasPreorder(BasicBlock *BB) const { return PostNumbers.count(BB); }
 
 
 
  /// Return true if this block has a postorder number.
 
  bool hasPostorder(BasicBlock *BB) const {
 
    DenseMap<BasicBlock*, unsigned>::const_iterator I = PostNumbers.find(BB);
 
    return I != PostNumbers.end() && I->second;
 
  }
 
 
 
  /// Get a block's postorder number.
 
  unsigned getPostorder(BasicBlock *BB) const {
 
    DenseMap<BasicBlock*, unsigned>::const_iterator I = PostNumbers.find(BB);
 
    assert(I != PostNumbers.end() && "block not visited by DFS");
 
    assert(I->second && "block not finished by DFS");
 
    return I->second;
 
  }
 
 
 
  /// Get a block's reverse postorder number.
 
  unsigned getRPO(BasicBlock *BB) const {
 
    return 1 + PostBlocks.size() - getPostorder(BB);
 
  }
 
 
 
  void clear() {
 
    PostNumbers.clear();
 
    PostBlocks.clear();
 
  }
 
};
 
 
 
/// Wrapper class to LoopBlocksDFS that provides a standard begin()/end()
 
/// interface for the DFS reverse post-order traversal of blocks in a loop body.
 
class LoopBlocksRPO {
 
private:
 
  LoopBlocksDFS DFS;
 
 
 
public:
 
  LoopBlocksRPO(Loop *Container) : DFS(Container) {}
 
 
 
  /// Traverse the loop blocks and store the DFS result.
 
  void perform(LoopInfo *LI) {
 
    DFS.perform(LI);
 
  }
 
 
 
  /// Reverse iterate over the cached postorder blocks.
 
  LoopBlocksDFS::RPOIterator begin() const { return DFS.beginRPO(); }
 
  LoopBlocksDFS::RPOIterator end() const { return DFS.endRPO(); }
 
};
 
 
 
/// Specialize po_iterator_storage to record postorder numbers.
 
template<> class po_iterator_storage<LoopBlocksTraversal, true> {
 
  LoopBlocksTraversal &LBT;
 
public:
 
  po_iterator_storage(LoopBlocksTraversal &lbs) : LBT(lbs) {}
 
  // These functions are defined below.
 
  bool insertEdge(std::optional<BasicBlock *> From, BasicBlock *To);
 
  void finishPostorder(BasicBlock *BB);
 
};
 
 
 
/// Traverse the blocks in a loop using a depth-first search.
 
class LoopBlocksTraversal {
 
public:
 
  /// Graph traversal iterator.
 
  typedef po_iterator<BasicBlock*, LoopBlocksTraversal, true> POTIterator;
 
 
 
private:
 
  LoopBlocksDFS &DFS;
 
  LoopInfo *LI;
 
 
 
public:
 
  LoopBlocksTraversal(LoopBlocksDFS &Storage, LoopInfo *LInfo) :
 
    DFS(Storage), LI(LInfo) {}
 
 
 
  /// Postorder traversal over the graph. This only needs to be done once.
 
  /// po_iterator "automatically" calls back to visitPreorder and
 
  /// finishPostorder to record the DFS result.
 
  POTIterator begin() {
 
    assert(DFS.PostBlocks.empty() && "Need clear DFS result before traversing");
 
    assert(DFS.L->getNumBlocks() && "po_iterator cannot handle an empty graph");
 
    return po_ext_begin(DFS.L->getHeader(), *this);
 
  }
 
  POTIterator end() {
 
    // po_ext_end interface requires a basic block, but ignores its value.
 
    return po_ext_end(DFS.L->getHeader(), *this);
 
  }
 
 
 
  /// Called by po_iterator upon reaching a block via a CFG edge. If this block
 
  /// is contained in the loop and has not been visited, then mark it preorder
 
  /// visited and return true.
 
  ///
 
  /// TODO: If anyone is interested, we could record preorder numbers here.
 
  bool visitPreorder(BasicBlock *BB) {
 
    if (!DFS.L->contains(LI->getLoopFor(BB)))
 
      return false;
 
 
 
    return DFS.PostNumbers.insert(std::make_pair(BB, 0)).second;
 
  }
 
 
 
  /// Called by po_iterator each time it advances, indicating a block's
 
  /// postorder.
 
  void finishPostorder(BasicBlock *BB) {
 
    assert(DFS.PostNumbers.count(BB) && "Loop DFS skipped preorder");
 
    DFS.PostBlocks.push_back(BB);
 
    DFS.PostNumbers[BB] = DFS.PostBlocks.size();
 
  }
 
};
 
 
 
inline bool po_iterator_storage<LoopBlocksTraversal, true>::insertEdge(
 
    std::optional<BasicBlock *> From, BasicBlock *To) {
 
  return LBT.visitPreorder(To);
 
}
 
 
 
inline void po_iterator_storage<LoopBlocksTraversal, true>::
 
finishPostorder(BasicBlock *BB) {
 
  LBT.finishPostorder(BB);
 
}
 
 
 
} // End namespace llvm
 
 
 
#endif