Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This is the generic implementation of LoopInfo used for both Loops and
  10. // MachineLoops.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
  15. #define LLVM_ANALYSIS_LOOPINFOIMPL_H
  16.  
  17. #include "llvm/ADT/PostOrderIterator.h"
  18. #include "llvm/ADT/STLExtras.h"
  19. #include "llvm/ADT/SetOperations.h"
  20. #include "llvm/Analysis/LoopInfo.h"
  21. #include "llvm/IR/Dominators.h"
  22.  
  23. namespace llvm {
  24.  
  25. //===----------------------------------------------------------------------===//
  26. // APIs for simple analysis of the loop. See header notes.
  27.  
  28. /// getExitingBlocks - Return all blocks inside the loop that have successors
  29. /// outside of the loop.  These are the blocks _inside of the current loop_
  30. /// which branch out.  The returned list is always unique.
  31. ///
  32. template <class BlockT, class LoopT>
  33. void LoopBase<BlockT, LoopT>::getExitingBlocks(
  34.     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
  35.   assert(!isInvalid() && "Loop not in a valid state!");
  36.   for (const auto BB : blocks())
  37.     for (auto *Succ : children<BlockT *>(BB))
  38.       if (!contains(Succ)) {
  39.         // Not in current loop? It must be an exit block.
  40.         ExitingBlocks.push_back(BB);
  41.         break;
  42.       }
  43. }
  44.  
  45. /// getExitingBlock - If getExitingBlocks would return exactly one block,
  46. /// return that block. Otherwise return null.
  47. template <class BlockT, class LoopT>
  48. BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
  49.   assert(!isInvalid() && "Loop not in a valid state!");
  50.   auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
  51.   auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
  52.     assert(!AllowRepeats && "Unexpected parameter value.");
  53.     // Child not in current loop?  It must be an exit block.
  54.     return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
  55.   };
  56.  
  57.   return find_singleton<BlockT>(blocks(), isExitBlock);
  58. }
  59.  
  60. /// getExitBlocks - Return all of the successor blocks of this loop.  These
  61. /// are the blocks _outside of the current loop_ which are branched to.
  62. ///
  63. template <class BlockT, class LoopT>
  64. void LoopBase<BlockT, LoopT>::getExitBlocks(
  65.     SmallVectorImpl<BlockT *> &ExitBlocks) const {
  66.   assert(!isInvalid() && "Loop not in a valid state!");
  67.   for (const auto BB : blocks())
  68.     for (auto *Succ : children<BlockT *>(BB))
  69.       if (!contains(Succ))
  70.         // Not in current loop? It must be an exit block.
  71.         ExitBlocks.push_back(Succ);
  72. }
  73.  
  74. /// getExitBlock - If getExitBlocks would return exactly one block,
  75. /// return that block. Otherwise return null.
  76. template <class BlockT, class LoopT>
  77. std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
  78.                                              bool Unique) {
  79.   assert(!L->isInvalid() && "Loop not in a valid state!");
  80.   auto notInLoop = [&](BlockT *BB,
  81.                        bool AllowRepeats) -> std::pair<BlockT *, bool> {
  82.     assert(AllowRepeats == Unique && "Unexpected parameter value.");
  83.     return {!L->contains(BB) ? BB : nullptr, false};
  84.   };
  85.   auto singleExitBlock = [&](BlockT *BB,
  86.                              bool AllowRepeats) -> std::pair<BlockT *, bool> {
  87.     assert(AllowRepeats == Unique && "Unexpected parameter value.");
  88.     return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
  89.                                          AllowRepeats);
  90.   };
  91.   return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
  92. }
  93.  
  94. template <class BlockT, class LoopT>
  95. bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
  96.   auto RC = getExitBlockHelper(this, false);
  97.   if (RC.second)
  98.     // found multiple exit blocks
  99.     return false;
  100.   // return true if there is no exit block
  101.   return !RC.first;
  102. }
  103.  
  104. /// getExitBlock - If getExitBlocks would return exactly one block,
  105. /// return that block. Otherwise return null.
  106. template <class BlockT, class LoopT>
  107. BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
  108.   return getExitBlockHelper(this, false).first;
  109. }
  110.  
  111. template <class BlockT, class LoopT>
  112. bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
  113.   // Each predecessor of each exit block of a normal loop is contained
  114.   // within the loop.
  115.   SmallVector<BlockT *, 4> UniqueExitBlocks;
  116.   getUniqueExitBlocks(UniqueExitBlocks);
  117.   for (BlockT *EB : UniqueExitBlocks)
  118.     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
  119.       if (!contains(Predecessor))
  120.         return false;
  121.   // All the requirements are met.
  122.   return true;
  123. }
  124.  
  125. // Helper function to get unique loop exits. Pred is a predicate pointing to
  126. // BasicBlocks in a loop which should be considered to find loop exits.
  127. template <class BlockT, class LoopT, typename PredicateT>
  128. void getUniqueExitBlocksHelper(const LoopT *L,
  129.                                SmallVectorImpl<BlockT *> &ExitBlocks,
  130.                                PredicateT Pred) {
  131.   assert(!L->isInvalid() && "Loop not in a valid state!");
  132.   SmallPtrSet<BlockT *, 32> Visited;
  133.   auto Filtered = make_filter_range(L->blocks(), Pred);
  134.   for (BlockT *BB : Filtered)
  135.     for (BlockT *Successor : children<BlockT *>(BB))
  136.       if (!L->contains(Successor))
  137.         if (Visited.insert(Successor).second)
  138.           ExitBlocks.push_back(Successor);
  139. }
  140.  
  141. template <class BlockT, class LoopT>
  142. void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
  143.     SmallVectorImpl<BlockT *> &ExitBlocks) const {
  144.   getUniqueExitBlocksHelper(this, ExitBlocks,
  145.                             [](const BlockT *BB) { return true; });
  146. }
  147.  
  148. template <class BlockT, class LoopT>
  149. void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
  150.     SmallVectorImpl<BlockT *> &ExitBlocks) const {
  151.   const BlockT *Latch = getLoopLatch();
  152.   assert(Latch && "Latch block must exists");
  153.   getUniqueExitBlocksHelper(this, ExitBlocks,
  154.                             [Latch](const BlockT *BB) { return BB != Latch; });
  155. }
  156.  
  157. template <class BlockT, class LoopT>
  158. BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
  159.   return getExitBlockHelper(this, true).first;
  160. }
  161.  
  162. /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
  163. template <class BlockT, class LoopT>
  164. void LoopBase<BlockT, LoopT>::getExitEdges(
  165.     SmallVectorImpl<Edge> &ExitEdges) const {
  166.   assert(!isInvalid() && "Loop not in a valid state!");
  167.   for (const auto BB : blocks())
  168.     for (auto *Succ : children<BlockT *>(BB))
  169.       if (!contains(Succ))
  170.         // Not in current loop? It must be an exit block.
  171.         ExitEdges.emplace_back(BB, Succ);
  172. }
  173.  
  174. /// getLoopPreheader - If there is a preheader for this loop, return it.  A
  175. /// loop has a preheader if there is only one edge to the header of the loop
  176. /// from outside of the loop and it is legal to hoist instructions into the
  177. /// predecessor. If this is the case, the block branching to the header of the
  178. /// loop is the preheader node.
  179. ///
  180. /// This method returns null if there is no preheader for the loop.
  181. ///
  182. template <class BlockT, class LoopT>
  183. BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
  184.   assert(!isInvalid() && "Loop not in a valid state!");
  185.   // Keep track of nodes outside the loop branching to the header...
  186.   BlockT *Out = getLoopPredecessor();
  187.   if (!Out)
  188.     return nullptr;
  189.  
  190.   // Make sure we are allowed to hoist instructions into the predecessor.
  191.   if (!Out->isLegalToHoistInto())
  192.     return nullptr;
  193.  
  194.   // Make sure there is only one exit out of the preheader.
  195.   typedef GraphTraits<BlockT *> BlockTraits;
  196.   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
  197.   ++SI;
  198.   if (SI != BlockTraits::child_end(Out))
  199.     return nullptr; // Multiple exits from the block, must not be a preheader.
  200.  
  201.   // The predecessor has exactly one successor, so it is a preheader.
  202.   return Out;
  203. }
  204.  
  205. /// getLoopPredecessor - If the given loop's header has exactly one unique
  206. /// predecessor outside the loop, return it. Otherwise return null.
  207. /// This is less strict that the loop "preheader" concept, which requires
  208. /// the predecessor to have exactly one successor.
  209. ///
  210. template <class BlockT, class LoopT>
  211. BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
  212.   assert(!isInvalid() && "Loop not in a valid state!");
  213.   // Keep track of nodes outside the loop branching to the header...
  214.   BlockT *Out = nullptr;
  215.  
  216.   // Loop over the predecessors of the header node...
  217.   BlockT *Header = getHeader();
  218.   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
  219.     if (!contains(Pred)) { // If the block is not in the loop...
  220.       if (Out && Out != Pred)
  221.         return nullptr; // Multiple predecessors outside the loop
  222.       Out = Pred;
  223.     }
  224.   }
  225.  
  226.   return Out;
  227. }
  228.  
  229. /// getLoopLatch - If there is a single latch block for this loop, return it.
  230. /// A latch block is a block that contains a branch back to the header.
  231. template <class BlockT, class LoopT>
  232. BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
  233.   assert(!isInvalid() && "Loop not in a valid state!");
  234.   BlockT *Header = getHeader();
  235.   BlockT *Latch = nullptr;
  236.   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
  237.     if (contains(Pred)) {
  238.       if (Latch)
  239.         return nullptr;
  240.       Latch = Pred;
  241.     }
  242.   }
  243.  
  244.   return Latch;
  245. }
  246.  
  247. //===----------------------------------------------------------------------===//
  248. // APIs for updating loop information after changing the CFG
  249. //
  250.  
  251. /// addBasicBlockToLoop - This method is used by other analyses to update loop
  252. /// information.  NewBB is set to be a new member of the current loop.
  253. /// Because of this, it is added as a member of all parent loops, and is added
  254. /// to the specified LoopInfo object as being in the current basic block.  It
  255. /// is not valid to replace the loop header with this method.
  256. ///
  257. template <class BlockT, class LoopT>
  258. void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
  259.     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
  260.   assert(!isInvalid() && "Loop not in a valid state!");
  261. #ifndef NDEBUG
  262.   if (!Blocks.empty()) {
  263.     auto SameHeader = LIB[getHeader()];
  264.     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
  265.            "Incorrect LI specified for this loop!");
  266.   }
  267. #endif
  268.   assert(NewBB && "Cannot add a null basic block to the loop!");
  269.   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
  270.  
  271.   LoopT *L = static_cast<LoopT *>(this);
  272.  
  273.   // Add the loop mapping to the LoopInfo object...
  274.   LIB.BBMap[NewBB] = L;
  275.  
  276.   // Add the basic block to this loop and all parent loops...
  277.   while (L) {
  278.     L->addBlockEntry(NewBB);
  279.     L = L->getParentLoop();
  280.   }
  281. }
  282.  
  283. /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
  284. /// the OldChild entry in our children list with NewChild, and updates the
  285. /// parent pointer of OldChild to be null and the NewChild to be this loop.
  286. /// This updates the loop depth of the new child.
  287. template <class BlockT, class LoopT>
  288. void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
  289.                                                    LoopT *NewChild) {
  290.   assert(!isInvalid() && "Loop not in a valid state!");
  291.   assert(OldChild->ParentLoop == this && "This loop is already broken!");
  292.   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
  293.   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
  294.   assert(I != SubLoops.end() && "OldChild not in loop!");
  295.   *I = NewChild;
  296.   OldChild->ParentLoop = nullptr;
  297.   NewChild->ParentLoop = static_cast<LoopT *>(this);
  298. }
  299.  
  300. /// verifyLoop - Verify loop structure
  301. template <class BlockT, class LoopT>
  302. void LoopBase<BlockT, LoopT>::verifyLoop() const {
  303.   assert(!isInvalid() && "Loop not in a valid state!");
  304. #ifndef NDEBUG
  305.   assert(!Blocks.empty() && "Loop header is missing");
  306.  
  307.   // Setup for using a depth-first iterator to visit every block in the loop.
  308.   SmallVector<BlockT *, 8> ExitBBs;
  309.   getExitBlocks(ExitBBs);
  310.   df_iterator_default_set<BlockT *> VisitSet;
  311.   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
  312.  
  313.   // Keep track of the BBs visited.
  314.   SmallPtrSet<BlockT *, 8> VisitedBBs;
  315.  
  316.   // Check the individual blocks.
  317.   for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
  318.     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
  319.                        GraphTraits<BlockT *>::child_end(BB),
  320.                        [&](BlockT *B) { return contains(B); }) &&
  321.            "Loop block has no in-loop successors!");
  322.  
  323.     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
  324.                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
  325.                        [&](BlockT *B) { return contains(B); }) &&
  326.            "Loop block has no in-loop predecessors!");
  327.  
  328.     SmallVector<BlockT *, 2> OutsideLoopPreds;
  329.     for (BlockT *B :
  330.          llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
  331.                           GraphTraits<Inverse<BlockT *>>::child_end(BB)))
  332.       if (!contains(B))
  333.         OutsideLoopPreds.push_back(B);
  334.  
  335.     if (BB == getHeader()) {
  336.       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
  337.     } else if (!OutsideLoopPreds.empty()) {
  338.       // A non-header loop shouldn't be reachable from outside the loop,
  339.       // though it is permitted if the predecessor is not itself actually
  340.       // reachable.
  341.       BlockT *EntryBB = &BB->getParent()->front();
  342.       for (BlockT *CB : depth_first(EntryBB))
  343.         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
  344.           assert(CB != OutsideLoopPreds[i] &&
  345.                  "Loop has multiple entry points!");
  346.     }
  347.     assert(BB != &getHeader()->getParent()->front() &&
  348.            "Loop contains function entry block!");
  349.  
  350.     VisitedBBs.insert(BB);
  351.   }
  352.  
  353.   if (VisitedBBs.size() != getNumBlocks()) {
  354.     dbgs() << "The following blocks are unreachable in the loop: ";
  355.     for (auto *BB : Blocks) {
  356.       if (!VisitedBBs.count(BB)) {
  357.         dbgs() << *BB << "\n";
  358.       }
  359.     }
  360.     assert(false && "Unreachable block in loop");
  361.   }
  362.  
  363.   // Check the subloops.
  364.   for (iterator I = begin(), E = end(); I != E; ++I)
  365.     // Each block in each subloop should be contained within this loop.
  366.     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
  367.          BI != BE; ++BI) {
  368.       assert(contains(*BI) &&
  369.              "Loop does not contain all the blocks of a subloop!");
  370.     }
  371.  
  372.   // Check the parent loop pointer.
  373.   if (ParentLoop) {
  374.     assert(is_contained(*ParentLoop, this) &&
  375.            "Loop is not a subloop of its parent!");
  376.   }
  377. #endif
  378. }
  379.  
  380. /// verifyLoop - Verify loop structure of this loop and all nested loops.
  381. template <class BlockT, class LoopT>
  382. void LoopBase<BlockT, LoopT>::verifyLoopNest(
  383.     DenseSet<const LoopT *> *Loops) const {
  384.   assert(!isInvalid() && "Loop not in a valid state!");
  385.   Loops->insert(static_cast<const LoopT *>(this));
  386.   // Verify this loop.
  387.   verifyLoop();
  388.   // Verify the subloops.
  389.   for (iterator I = begin(), E = end(); I != E; ++I)
  390.     (*I)->verifyLoopNest(Loops);
  391. }
  392.  
  393. template <class BlockT, class LoopT>
  394. void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
  395.                                     bool PrintNested, unsigned Depth) const {
  396.   OS.indent(Depth * 2);
  397.   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
  398.     OS << "Parallel ";
  399.   OS << "Loop at depth " << getLoopDepth() << " containing: ";
  400.  
  401.   BlockT *H = getHeader();
  402.   for (unsigned i = 0; i < getBlocks().size(); ++i) {
  403.     BlockT *BB = getBlocks()[i];
  404.     if (!Verbose) {
  405.       if (i)
  406.         OS << ",";
  407.       BB->printAsOperand(OS, false);
  408.     } else
  409.       OS << "\n";
  410.  
  411.     if (BB == H)
  412.       OS << "<header>";
  413.     if (isLoopLatch(BB))
  414.       OS << "<latch>";
  415.     if (isLoopExiting(BB))
  416.       OS << "<exiting>";
  417.     if (Verbose)
  418.       BB->print(OS);
  419.   }
  420.  
  421.   if (PrintNested) {
  422.     OS << "\n";
  423.  
  424.     for (iterator I = begin(), E = end(); I != E; ++I)
  425.       (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
  426.   }
  427. }
  428.  
  429. //===----------------------------------------------------------------------===//
  430. /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
  431. /// result does / not depend on use list (block predecessor) order.
  432. ///
  433.  
  434. /// Discover a subloop with the specified backedges such that: All blocks within
  435. /// this loop are mapped to this loop or a subloop. And all subloops within this
  436. /// loop have their parent loop set to this loop or a subloop.
  437. template <class BlockT, class LoopT>
  438. static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
  439.                                   LoopInfoBase<BlockT, LoopT> *LI,
  440.                                   const DomTreeBase<BlockT> &DomTree) {
  441.   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
  442.  
  443.   unsigned NumBlocks = 0;
  444.   unsigned NumSubloops = 0;
  445.  
  446.   // Perform a backward CFG traversal using a worklist.
  447.   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
  448.   while (!ReverseCFGWorklist.empty()) {
  449.     BlockT *PredBB = ReverseCFGWorklist.back();
  450.     ReverseCFGWorklist.pop_back();
  451.  
  452.     LoopT *Subloop = LI->getLoopFor(PredBB);
  453.     if (!Subloop) {
  454.       if (!DomTree.isReachableFromEntry(PredBB))
  455.         continue;
  456.  
  457.       // This is an undiscovered block. Map it to the current loop.
  458.       LI->changeLoopFor(PredBB, L);
  459.       ++NumBlocks;
  460.       if (PredBB == L->getHeader())
  461.         continue;
  462.       // Push all block predecessors on the worklist.
  463.       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
  464.                                 InvBlockTraits::child_begin(PredBB),
  465.                                 InvBlockTraits::child_end(PredBB));
  466.     } else {
  467.       // This is a discovered block. Find its outermost discovered loop.
  468.       Subloop = Subloop->getOutermostLoop();
  469.  
  470.       // If it is already discovered to be a subloop of this loop, continue.
  471.       if (Subloop == L)
  472.         continue;
  473.  
  474.       // Discover a subloop of this loop.
  475.       Subloop->setParentLoop(L);
  476.       ++NumSubloops;
  477.       NumBlocks += Subloop->getBlocksVector().capacity();
  478.       PredBB = Subloop->getHeader();
  479.       // Continue traversal along predecessors that are not loop-back edges from
  480.       // within this subloop tree itself. Note that a predecessor may directly
  481.       // reach another subloop that is not yet discovered to be a subloop of
  482.       // this loop, which we must traverse.
  483.       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
  484.         if (LI->getLoopFor(Pred) != Subloop)
  485.           ReverseCFGWorklist.push_back(Pred);
  486.       }
  487.     }
  488.   }
  489.   L->getSubLoopsVector().reserve(NumSubloops);
  490.   L->reserveBlocks(NumBlocks);
  491. }
  492.  
  493. /// Populate all loop data in a stable order during a single forward DFS.
  494. template <class BlockT, class LoopT> class PopulateLoopsDFS {
  495.   typedef GraphTraits<BlockT *> BlockTraits;
  496.   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
  497.  
  498.   LoopInfoBase<BlockT, LoopT> *LI;
  499.  
  500. public:
  501.   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
  502.  
  503.   void traverse(BlockT *EntryBlock);
  504.  
  505. protected:
  506.   void insertIntoLoop(BlockT *Block);
  507. };
  508.  
  509. /// Top-level driver for the forward DFS within the loop.
  510. template <class BlockT, class LoopT>
  511. void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
  512.   for (BlockT *BB : post_order(EntryBlock))
  513.     insertIntoLoop(BB);
  514. }
  515.  
  516. /// Add a single Block to its ancestor loops in PostOrder. If the block is a
  517. /// subloop header, add the subloop to its parent in PostOrder, then reverse the
  518. /// Block and Subloop vectors of the now complete subloop to achieve RPO.
  519. template <class BlockT, class LoopT>
  520. void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
  521.   LoopT *Subloop = LI->getLoopFor(Block);
  522.   if (Subloop && Block == Subloop->getHeader()) {
  523.     // We reach this point once per subloop after processing all the blocks in
  524.     // the subloop.
  525.     if (!Subloop->isOutermost())
  526.       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
  527.     else
  528.       LI->addTopLevelLoop(Subloop);
  529.  
  530.     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
  531.     // the lists, except for the loop header, which is always at the beginning.
  532.     Subloop->reverseBlock(1);
  533.     std::reverse(Subloop->getSubLoopsVector().begin(),
  534.                  Subloop->getSubLoopsVector().end());
  535.  
  536.     Subloop = Subloop->getParentLoop();
  537.   }
  538.   for (; Subloop; Subloop = Subloop->getParentLoop())
  539.     Subloop->addBlockEntry(Block);
  540. }
  541.  
  542. /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
  543. /// interleaved with backward CFG traversals within each subloop
  544. /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
  545. /// this part of the algorithm is linear in the number of CFG edges. Subloop and
  546. /// Block vectors are then populated during a single forward CFG traversal
  547. /// (PopulateLoopDFS).
  548. ///
  549. /// During the two CFG traversals each block is seen three times:
  550. /// 1) Discovered and mapped by a reverse CFG traversal.
  551. /// 2) Visited during a forward DFS CFG traversal.
  552. /// 3) Reverse-inserted in the loop in postorder following forward DFS.
  553. ///
  554. /// The Block vectors are inclusive, so step 3 requires loop-depth number of
  555. /// insertions per block.
  556. template <class BlockT, class LoopT>
  557. void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
  558.   // Postorder traversal of the dominator tree.
  559.   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
  560.   for (auto DomNode : post_order(DomRoot)) {
  561.  
  562.     BlockT *Header = DomNode->getBlock();
  563.     SmallVector<BlockT *, 4> Backedges;
  564.  
  565.     // Check each predecessor of the potential loop header.
  566.     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
  567.       // If Header dominates predBB, this is a new loop. Collect the backedges.
  568.       if (DomTree.dominates(Header, Backedge) &&
  569.           DomTree.isReachableFromEntry(Backedge)) {
  570.         Backedges.push_back(Backedge);
  571.       }
  572.     }
  573.     // Perform a backward CFG traversal to discover and map blocks in this loop.
  574.     if (!Backedges.empty()) {
  575.       LoopT *L = AllocateLoop(Header);
  576.       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
  577.     }
  578.   }
  579.   // Perform a single forward CFG traversal to populate block and subloop
  580.   // vectors for all loops.
  581.   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
  582.   DFS.traverse(DomRoot->getBlock());
  583. }
  584.  
  585. template <class BlockT, class LoopT>
  586. SmallVector<LoopT *, 4>
  587. LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
  588.   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
  589.   // The outer-most loop actually goes into the result in the same relative
  590.   // order as we walk it. But LoopInfo stores the top level loops in reverse
  591.   // program order so for here we reverse it to get forward program order.
  592.   // FIXME: If we change the order of LoopInfo we will want to remove the
  593.   // reverse here.
  594.   for (LoopT *RootL : reverse(*this)) {
  595.     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
  596.     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
  597.                          PreOrderLoopsInRootL.end());
  598.   }
  599.  
  600.   return PreOrderLoops;
  601. }
  602.  
  603. template <class BlockT, class LoopT>
  604. SmallVector<LoopT *, 4>
  605. LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
  606.   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
  607.   // The outer-most loop actually goes into the result in the same relative
  608.   // order as we walk it. LoopInfo stores the top level loops in reverse
  609.   // program order so we walk in order here.
  610.   // FIXME: If we change the order of LoopInfo we will want to add a reverse
  611.   // here.
  612.   for (LoopT *RootL : *this) {
  613.     assert(PreOrderWorklist.empty() &&
  614.            "Must start with an empty preorder walk worklist.");
  615.     PreOrderWorklist.push_back(RootL);
  616.     do {
  617.       LoopT *L = PreOrderWorklist.pop_back_val();
  618.       // Sub-loops are stored in forward program order, but will process the
  619.       // worklist backwards so we can just append them in order.
  620.       PreOrderWorklist.append(L->begin(), L->end());
  621.       PreOrderLoops.push_back(L);
  622.     } while (!PreOrderWorklist.empty());
  623.   }
  624.  
  625.   return PreOrderLoops;
  626. }
  627.  
  628. // Debugging
  629. template <class BlockT, class LoopT>
  630. void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
  631.   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
  632.     TopLevelLoops[i]->print(OS);
  633. #if 0
  634.   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
  635.          E = BBMap.end(); I != E; ++I)
  636.     OS << "BB '" << I->first->getName() << "' level = "
  637.        << I->second->getLoopDepth() << "\n";
  638. #endif
  639. }
  640.  
  641. template <typename T>
  642. bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
  643.   llvm::sort(BB1);
  644.   llvm::sort(BB2);
  645.   return BB1 == BB2;
  646. }
  647.  
  648. template <class BlockT, class LoopT>
  649. void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
  650.                                const LoopInfoBase<BlockT, LoopT> &LI,
  651.                                const LoopT &L) {
  652.   LoopHeaders[L.getHeader()] = &L;
  653.   for (LoopT *SL : L)
  654.     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
  655. }
  656.  
  657. #ifndef NDEBUG
  658. template <class BlockT, class LoopT>
  659. static void compareLoops(const LoopT *L, const LoopT *OtherL,
  660.                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
  661.   BlockT *H = L->getHeader();
  662.   BlockT *OtherH = OtherL->getHeader();
  663.   assert(H == OtherH &&
  664.          "Mismatched headers even though found in the same map entry!");
  665.  
  666.   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
  667.          "Mismatched loop depth!");
  668.   const LoopT *ParentL = L, *OtherParentL = OtherL;
  669.   do {
  670.     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
  671.            "Mismatched parent loop headers!");
  672.     ParentL = ParentL->getParentLoop();
  673.     OtherParentL = OtherParentL->getParentLoop();
  674.   } while (ParentL);
  675.  
  676.   for (const LoopT *SubL : *L) {
  677.     BlockT *SubH = SubL->getHeader();
  678.     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
  679.     assert(OtherSubL && "Inner loop is missing in computed loop info!");
  680.     OtherLoopHeaders.erase(SubH);
  681.     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
  682.   }
  683.  
  684.   std::vector<BlockT *> BBs = L->getBlocks();
  685.   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
  686.   assert(compareVectors(BBs, OtherBBs) &&
  687.          "Mismatched basic blocks in the loops!");
  688.  
  689.   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
  690.   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
  691.       OtherL->getBlocksSet();
  692.   assert(BlocksSet.size() == OtherBlocksSet.size() &&
  693.          llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
  694.          "Mismatched basic blocks in BlocksSets!");
  695. }
  696. #endif
  697.  
  698. template <class BlockT, class LoopT>
  699. void LoopInfoBase<BlockT, LoopT>::verify(
  700.     const DomTreeBase<BlockT> &DomTree) const {
  701.   DenseSet<const LoopT *> Loops;
  702.   for (iterator I = begin(), E = end(); I != E; ++I) {
  703.     assert((*I)->isOutermost() && "Top-level loop has a parent!");
  704.     (*I)->verifyLoopNest(&Loops);
  705.   }
  706.  
  707. // Verify that blocks are mapped to valid loops.
  708. #ifndef NDEBUG
  709.   for (auto &Entry : BBMap) {
  710.     const BlockT *BB = Entry.first;
  711.     LoopT *L = Entry.second;
  712.     assert(Loops.count(L) && "orphaned loop");
  713.     assert(L->contains(BB) && "orphaned block");
  714.     for (LoopT *ChildLoop : *L)
  715.       assert(!ChildLoop->contains(BB) &&
  716.              "BBMap should point to the innermost loop containing BB");
  717.   }
  718.  
  719.   // Recompute LoopInfo to verify loops structure.
  720.   LoopInfoBase<BlockT, LoopT> OtherLI;
  721.   OtherLI.analyze(DomTree);
  722.  
  723.   // Build a map we can use to move from our LI to the computed one. This
  724.   // allows us to ignore the particular order in any layer of the loop forest
  725.   // while still comparing the structure.
  726.   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
  727.   for (LoopT *L : OtherLI)
  728.     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
  729.  
  730.   // Walk the top level loops and ensure there is a corresponding top-level
  731.   // loop in the computed version and then recursively compare those loop
  732.   // nests.
  733.   for (LoopT *L : *this) {
  734.     BlockT *Header = L->getHeader();
  735.     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
  736.     assert(OtherL && "Top level loop is missing in computed loop info!");
  737.     // Now that we've matched this loop, erase its header from the map.
  738.     OtherLoopHeaders.erase(Header);
  739.     // And recursively compare these loops.
  740.     compareLoops(L, OtherL, OtherLoopHeaders);
  741.   }
  742.  
  743.   // Any remaining entries in the map are loops which were found when computing
  744.   // a fresh LoopInfo but not present in the current one.
  745.   if (!OtherLoopHeaders.empty()) {
  746.     for (const auto &HeaderAndLoop : OtherLoopHeaders)
  747.       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
  748.     llvm_unreachable("Found new loops when recomputing LoopInfo!");
  749.   }
  750. #endif
  751. }
  752.  
  753. } // End llvm namespace
  754.  
  755. #endif
  756.