//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the LoopInfo class that is used to identify natural loops
 
// and determine the loop depth of various nodes of the CFG.  A natural loop
 
// has exactly one entry-point, which is called the header. Note that natural
 
// loops may actually be several loops that share the same header node.
 
//
 
// This analysis calculates the nesting structure of loops in a function.  For
 
// each natural loop identified, this analysis identifies natural loops
 
// contained entirely within the loop and the basic blocks the make up the loop.
 
//
 
// It can calculate on the fly various bits of information, for example:
 
//
 
//  * whether there is a preheader for the loop
 
//  * the number of back edges to the header
 
//  * whether or not a particular block branches out of the loop
 
//  * the successor blocks of the loop
 
//  * the loop depth
 
//  * etc...
 
//
 
// Note that this analysis specifically identifies *Loops* not cycles or SCCs
 
// in the CFG.  There can be strongly connected components in the CFG which
 
// this analysis will not recognize and that will not be represented by a Loop
 
// instance.  In particular, a Loop might be inside such a non-loop SCC, or a
 
// non-loop SCC might contain a sub-SCC which is a Loop.
 
//
 
// For an overview of terminology used in this API (and thus all of our loop
 
// analyses or transforms), see docs/LoopTerminology.rst.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_LOOPINFO_H
 
#define LLVM_ANALYSIS_LOOPINFO_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/IR/CFG.h"
 
#include "llvm/IR/Instructions.h"
 
#include "llvm/IR/PassManager.h"
 
#include "llvm/Pass.h"
 
#include "llvm/Support/Allocator.h"
 
#include <algorithm>
 
#include <optional>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class DominatorTree;
 
class InductionDescriptor;
 
class Instruction;
 
class LoopInfo;
 
class Loop;
 
class MDNode;
 
class MemorySSAUpdater;
 
class ScalarEvolution;
 
class raw_ostream;
 
template <class N, bool IsPostDom> class DominatorTreeBase;
 
template <class N, class M> class LoopInfoBase;
 
template <class N, class M> class LoopBase;
 
 
 
//===----------------------------------------------------------------------===//
 
/// Instances of this class are used to represent loops that are detected in the
 
/// flow graph.
 
///
 
template <class BlockT, class LoopT> class LoopBase {
 
  LoopT *ParentLoop;
 
  // Loops contained entirely within this one.
 
  std::vector<LoopT *> SubLoops;
 
 
 
  // The list of blocks in this loop. First entry is the header node.
 
  std::vector<BlockT *> Blocks;
 
 
 
  SmallPtrSet<const BlockT *, 8> DenseBlockSet;
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  /// Indicator that this loop is no longer a valid loop.
 
  bool IsInvalid = false;
 
#endif
 
 
 
  LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
 
  const LoopBase<BlockT, LoopT> &
 
  operator=(const LoopBase<BlockT, LoopT> &) = delete;
 
 
 
public:
 
  /// Return the nesting level of this loop.  An outer-most loop has depth 1,
 
  /// for consistency with loop depth values used for basic blocks, where depth
 
  /// 0 is used for blocks not inside any loops.
 
  unsigned getLoopDepth() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    unsigned D = 1;
 
    for (const LoopT *CurLoop = ParentLoop; CurLoop;
 
         CurLoop = CurLoop->ParentLoop)
 
      ++D;
 
    return D;
 
  }
 
  BlockT *getHeader() const { return getBlocks().front(); }
 
  /// Return the parent loop if it exists or nullptr for top
 
  /// level loops.
 
 
 
  /// A loop is either top-level in a function (that is, it is not
 
  /// contained in any other loop) or it is entirely enclosed in
 
  /// some other loop.
 
  /// If a loop is top-level, it has no parent, otherwise its
 
  /// parent is the innermost loop in which it is enclosed.
 
  LoopT *getParentLoop() const { return ParentLoop; }
 
 
 
  /// Get the outermost loop in which this loop is contained.
 
  /// This may be the loop itself, if it already is the outermost loop.
 
  const LoopT *getOutermostLoop() const {
 
    const LoopT *L = static_cast<const LoopT *>(this);
 
    while (L->ParentLoop)
 
      L = L->ParentLoop;
 
    return L;
 
  }
 
 
 
  LoopT *getOutermostLoop() {
 
    LoopT *L = static_cast<LoopT *>(this);
 
    while (L->ParentLoop)
 
      L = L->ParentLoop;
 
    return L;
 
  }
 
 
 
  /// This is a raw interface for bypassing addChildLoop.
 
  void setParentLoop(LoopT *L) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    ParentLoop = L;
 
  }
 
 
 
  /// Return true if the specified loop is contained within in this loop.
 
  bool contains(const LoopT *L) const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    if (L == this)
 
      return true;
 
    if (!L)
 
      return false;
 
    return contains(L->getParentLoop());
 
  }
 
 
 
  /// Return true if the specified basic block is in this loop.
 
  bool contains(const BlockT *BB) const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return DenseBlockSet.count(BB);
 
  }
 
 
 
  /// Return true if the specified instruction is in this loop.
 
  template <class InstT> bool contains(const InstT *Inst) const {
 
    return contains(Inst->getParent());
 
  }
 
 
 
  /// Return the loops contained entirely within this loop.
 
  const std::vector<LoopT *> &getSubLoops() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return SubLoops;
 
  }
 
  std::vector<LoopT *> &getSubLoopsVector() {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return SubLoops;
 
  }
 
  typedef typename std::vector<LoopT *>::const_iterator iterator;
 
  typedef
 
      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
 
  iterator begin() const { return getSubLoops().begin(); }
 
  iterator end() const { return getSubLoops().end(); }
 
  reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
 
  reverse_iterator rend() const { return getSubLoops().rend(); }
 
 
 
  // LoopInfo does not detect irreducible control flow, just natural
 
  // loops. That is, it is possible that there is cyclic control
 
  // flow within the "innermost loop" or around the "outermost
 
  // loop".
 
 
 
  /// Return true if the loop does not contain any (natural) loops.
 
  bool isInnermost() const { return getSubLoops().empty(); }
 
  /// Return true if the loop does not have a parent (natural) loop
 
  // (i.e. it is outermost, which is the same as top-level).
 
  bool isOutermost() const { return getParentLoop() == nullptr; }
 
 
 
  /// Get a list of the basic blocks which make up this loop.
 
  ArrayRef<BlockT *> getBlocks() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return Blocks;
 
  }
 
  typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
 
  block_iterator block_begin() const { return getBlocks().begin(); }
 
  block_iterator block_end() const { return getBlocks().end(); }
 
  inline iterator_range<block_iterator> blocks() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return make_range(block_begin(), block_end());
 
  }
 
 
 
  /// Get the number of blocks in this loop in constant time.
 
  /// Invalidate the loop, indicating that it is no longer a loop.
 
  unsigned getNumBlocks() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return Blocks.size();
 
  }
 
 
 
  /// Return a direct, mutable handle to the blocks vector so that we can
 
  /// mutate it efficiently with techniques like `std::remove`.
 
  std::vector<BlockT *> &getBlocksVector() {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return Blocks;
 
  }
 
  /// Return a direct, mutable handle to the blocks set so that we can
 
  /// mutate it efficiently.
 
  SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return DenseBlockSet;
 
  }
 
 
 
  /// Return a direct, immutable handle to the blocks set.
 
  const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    return DenseBlockSet;
 
  }
 
 
 
  /// Return true if this loop is no longer valid.  The only valid use of this
 
  /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
 
  /// true by the destructor.  In other words, if this accessor returns true,
 
  /// the caller has already triggered UB by calling this accessor; and so it
 
  /// can only be called in a context where a return value of true indicates a
 
  /// programmer error.
 
  bool isInvalid() const {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    return IsInvalid;
 
#else
 
    return false;
 
#endif
 
  }
 
 
 
  /// True if terminator in the block can branch to another block that is
 
  /// outside of the current loop. \p BB must be inside the loop.
 
  bool isLoopExiting(const BlockT *BB) const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    assert(contains(BB) && "Exiting block must be part of the loop");
 
    for (const auto *Succ : children<const BlockT *>(BB)) {
 
      if (!contains(Succ))
 
        return true;
 
    }
 
    return false;
 
  }
 
 
 
  /// Returns true if \p BB is a loop-latch.
 
  /// A latch block is a block that contains a branch back to the header.
 
  /// This function is useful when there are multiple latches in a loop
 
  /// because \fn getLoopLatch will return nullptr in that case.
 
  bool isLoopLatch(const BlockT *BB) const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    assert(contains(BB) && "block does not belong to the loop");
 
 
 
    BlockT *Header = getHeader();
 
    auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
 
    auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
 
    return std::find(PredBegin, PredEnd, BB) != PredEnd;
 
  }
 
 
 
  /// Calculate the number of back edges to the loop header.
 
  unsigned getNumBackEdges() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    unsigned NumBackEdges = 0;
 
    BlockT *H = getHeader();
 
 
 
    for (const auto Pred : children<Inverse<BlockT *>>(H))
 
      if (contains(Pred))
 
        ++NumBackEdges;
 
 
 
    return NumBackEdges;
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // APIs for simple analysis of the loop.
 
  //
 
  // Note that all of these methods can fail on general loops (ie, there may not
 
  // be a preheader, etc).  For best success, the loop simplification and
 
  // induction variable canonicalization pass should be used to normalize loops
 
  // for easy analysis.  These methods assume canonical loops.
 
 
 
  /// Return all blocks inside the loop that have successors outside of the
 
  /// loop. These are the blocks _inside of the current loop_ which branch out.
 
  /// The returned list is always unique.
 
  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
 
 
 
  /// If getExitingBlocks would return exactly one block, return that block.
 
  /// Otherwise return null.
 
  BlockT *getExitingBlock() const;
 
 
 
  /// Return all of the successor blocks of this loop. These are the blocks
 
  /// _outside of the current loop_ which are branched to.
 
  void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
 
 
 
  /// If getExitBlocks would return exactly one block, return that block.
 
  /// Otherwise return null.
 
  BlockT *getExitBlock() const;
 
 
 
  /// Return true if no exit block for the loop has a predecessor that is
 
  /// outside the loop.
 
  bool hasDedicatedExits() const;
 
 
 
  /// Return all unique successor blocks of this loop.
 
  /// These are the blocks _outside of the current loop_ which are branched to.
 
  void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
 
 
 
  /// Return all unique successor blocks of this loop except successors from
 
  /// Latch block are not considered. If the exit comes from Latch has also
 
  /// non Latch predecessor in a loop it will be added to ExitBlocks.
 
  /// These are the blocks _outside of the current loop_ which are branched to.
 
  void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
 
 
 
  /// If getUniqueExitBlocks would return exactly one block, return that block.
 
  /// Otherwise return null.
 
  BlockT *getUniqueExitBlock() const;
 
 
 
  /// Return true if this loop does not have any exit blocks.
 
  bool hasNoExitBlocks() const;
 
 
 
  /// Edge type.
 
  typedef std::pair<BlockT *, BlockT *> Edge;
 
 
 
  /// Return all pairs of (_inside_block_,_outside_block_).
 
  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
 
 
 
  /// If there is a preheader for this loop, return it. A loop has a preheader
 
  /// if there is only one edge to the header of the loop from outside of the
 
  /// loop. If this is the case, the block branching to the header of the loop
 
  /// is the preheader node.
 
  ///
 
  /// This method returns null if there is no preheader for the loop.
 
  BlockT *getLoopPreheader() const;
 
 
 
  /// If the given loop's header has exactly one unique predecessor outside the
 
  /// loop, return it. Otherwise return null.
 
  ///  This is less strict that the loop "preheader" concept, which requires
 
  /// the predecessor to have exactly one successor.
 
  BlockT *getLoopPredecessor() const;
 
 
 
  /// If there is a single latch block for this loop, return it.
 
  /// A latch block is a block that contains a branch back to the header.
 
  BlockT *getLoopLatch() const;
 
 
 
  /// Return all loop latch blocks of this loop. A latch block is a block that
 
  /// contains a branch back to the header.
 
  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    BlockT *H = getHeader();
 
    for (const auto Pred : children<Inverse<BlockT *>>(H))
 
      if (contains(Pred))
 
        LoopLatches.push_back(Pred);
 
  }
 
 
 
  /// Return all inner loops in the loop nest rooted by the loop in preorder,
 
  /// with siblings in forward program order.
 
  template <class Type>
 
  static void getInnerLoopsInPreorder(const LoopT &L,
 
                                      SmallVectorImpl<Type> &PreOrderLoops) {
 
    SmallVector<LoopT *, 4> PreOrderWorklist;
 
    PreOrderWorklist.append(L.rbegin(), L.rend());
 
 
 
    while (!PreOrderWorklist.empty()) {
 
      LoopT *L = PreOrderWorklist.pop_back_val();
 
      // Sub-loops are stored in forward program order, but will process the
 
      // worklist backwards so append them in reverse order.
 
      PreOrderWorklist.append(L->rbegin(), L->rend());
 
      PreOrderLoops.push_back(L);
 
    }
 
  }
 
 
 
  /// Return all loops in the loop nest rooted by the loop in preorder, with
 
  /// siblings in forward program order.
 
  SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
 
    SmallVector<const LoopT *, 4> PreOrderLoops;
 
    const LoopT *CurLoop = static_cast<const LoopT *>(this);
 
    PreOrderLoops.push_back(CurLoop);
 
    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
 
    return PreOrderLoops;
 
  }
 
  SmallVector<LoopT *, 4> getLoopsInPreorder() {
 
    SmallVector<LoopT *, 4> PreOrderLoops;
 
    LoopT *CurLoop = static_cast<LoopT *>(this);
 
    PreOrderLoops.push_back(CurLoop);
 
    getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
 
    return PreOrderLoops;
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // APIs for updating loop information after changing the CFG
 
  //
 
 
 
  /// This method is used by other analyses to update loop information.
 
  /// NewBB is set to be a new member of the current loop.
 
  /// Because of this, it is added as a member of all parent loops, and is added
 
  /// to the specified LoopInfo object as being in the current basic block.  It
 
  /// is not valid to replace the loop header with this method.
 
  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
 
 
 
  /// This is used when splitting loops up. It replaces the OldChild entry in
 
  /// our children list with NewChild, and updates the parent pointer of
 
  /// OldChild to be null and the NewChild to be this loop.
 
  /// This updates the loop depth of the new child.
 
  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
 
 
 
  /// Add the specified loop to be a child of this loop.
 
  /// This updates the loop depth of the new child.
 
  void addChildLoop(LoopT *NewChild) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
 
    NewChild->ParentLoop = static_cast<LoopT *>(this);
 
    SubLoops.push_back(NewChild);
 
  }
 
 
 
  /// This removes the specified child from being a subloop of this loop. The
 
  /// loop is not deleted, as it will presumably be inserted into another loop.
 
  LoopT *removeChildLoop(iterator I) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    assert(I != SubLoops.end() && "Cannot remove end iterator!");
 
    LoopT *Child = *I;
 
    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
 
    SubLoops.erase(SubLoops.begin() + (I - begin()));
 
    Child->ParentLoop = nullptr;
 
    return Child;
 
  }
 
 
 
  /// This removes the specified child from being a subloop of this loop. The
 
  /// loop is not deleted, as it will presumably be inserted into another loop.
 
  LoopT *removeChildLoop(LoopT *Child) {
 
    return removeChildLoop(llvm::find(*this, Child));
 
  }
 
 
 
  /// This adds a basic block directly to the basic block list.
 
  /// This should only be used by transformations that create new loops.  Other
 
  /// transformations should use addBasicBlockToLoop.
 
  void addBlockEntry(BlockT *BB) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    Blocks.push_back(BB);
 
    DenseBlockSet.insert(BB);
 
  }
 
 
 
  /// interface to reverse Blocks[from, end of loop] in this loop
 
  void reverseBlock(unsigned from) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    std::reverse(Blocks.begin() + from, Blocks.end());
 
  }
 
 
 
  /// interface to do reserve() for Blocks
 
  void reserveBlocks(unsigned size) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    Blocks.reserve(size);
 
  }
 
 
 
  /// This method is used to move BB (which must be part of this loop) to be the
 
  /// loop header of the loop (the block that dominates all others).
 
  void moveToHeader(BlockT *BB) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    if (Blocks[0] == BB)
 
      return;
 
    for (unsigned i = 0;; ++i) {
 
      assert(i != Blocks.size() && "Loop does not contain BB!");
 
      if (Blocks[i] == BB) {
 
        Blocks[i] = Blocks[0];
 
        Blocks[0] = BB;
 
        return;
 
      }
 
    }
 
  }
 
 
 
  /// This removes the specified basic block from the current loop, updating the
 
  /// Blocks as appropriate. This does not update the mapping in the LoopInfo
 
  /// class.
 
  void removeBlockFromLoop(BlockT *BB) {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    auto I = find(Blocks, BB);
 
    assert(I != Blocks.end() && "N is not in this list!");
 
    Blocks.erase(I);
 
 
 
    DenseBlockSet.erase(BB);
 
  }
 
 
 
  /// Verify loop structure
 
  void verifyLoop() const;
 
 
 
  /// Verify loop structure of this loop and all nested loops.
 
  void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
 
 
 
  /// Returns true if the loop is annotated parallel.
 
  ///
 
  /// Derived classes can override this method using static template
 
  /// polymorphism.
 
  bool isAnnotatedParallel() const { return false; }
 
 
 
  /// Print loop with all the BBs inside it.
 
  void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
 
             unsigned Depth = 0) const;
 
 
 
protected:
 
  friend class LoopInfoBase<BlockT, LoopT>;
 
 
 
  /// This creates an empty loop.
 
  LoopBase() : ParentLoop(nullptr) {}
 
 
 
  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
 
    Blocks.push_back(BB);
 
    DenseBlockSet.insert(BB);
 
  }
 
 
 
  // Since loop passes like SCEV are allowed to key analysis results off of
 
  // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
 
  // This means loop passes should not be `delete` ing `Loop` objects directly
 
  // (and risk a later `Loop` allocation re-using the address of a previous one)
 
  // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
 
  // pointer till the end of the lifetime of the `LoopInfo` object.
 
  //
 
  // To make it easier to follow this rule, we mark the destructor as
 
  // non-public.
 
  ~LoopBase() {
 
    for (auto *SubLoop : SubLoops)
 
      SubLoop->~LoopT();
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    IsInvalid = true;
 
#endif
 
    SubLoops.clear();
 
    Blocks.clear();
 
    DenseBlockSet.clear();
 
    ParentLoop = nullptr;
 
  }
 
};
 
 
 
template <class BlockT, class LoopT>
 
raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
 
  Loop.print(OS);
 
  return OS;
 
}
 
 
 
// Implementation in LoopInfoImpl.h
 
extern template class LoopBase<BasicBlock, Loop>;
 
 
 
/// Represents a single loop in the control flow graph.  Note that not all SCCs
 
/// in the CFG are necessarily loops.
 
class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> {
 
public:
 
  /// A range representing the start and end location of a loop.
 
  class LocRange {
 
    DebugLoc Start;
 
    DebugLoc End;
 
 
 
  public:
 
    LocRange() = default;
 
    LocRange(DebugLoc Start) : Start(Start), End(Start) {}
 
    LocRange(DebugLoc Start, DebugLoc End)
 
        : Start(std::move(Start)), End(std::move(End)) {}
 
 
 
    const DebugLoc &getStart() const { return Start; }
 
    const DebugLoc &getEnd() const { return End; }
 
 
 
    /// Check for null.
 
    ///
 
    explicit operator bool() const { return Start && End; }
 
  };
 
 
 
  /// Return true if the specified value is loop invariant.
 
  bool isLoopInvariant(const Value *V) const;
 
 
 
  /// Return true if all the operands of the specified instruction are loop
 
  /// invariant.
 
  bool hasLoopInvariantOperands(const Instruction *I) const;
 
 
 
  /// If the given value is an instruction inside of the loop and it can be
 
  /// hoisted, do so to make it trivially loop-invariant.
 
  /// Return true if \c V is already loop-invariant, and false if \c V can't
 
  /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is
 
  /// set to true. This function can be used as a slightly more aggressive
 
  /// replacement for isLoopInvariant.
 
  ///
 
  /// If InsertPt is specified, it is the point to hoist instructions to.
 
  /// If null, the terminator of the loop preheader is used.
 
  ///
 
  bool makeLoopInvariant(Value *V, bool &Changed,
 
                         Instruction *InsertPt = nullptr,
 
                         MemorySSAUpdater *MSSAU = nullptr,
 
                         ScalarEvolution *SE = nullptr) const;
 
 
 
  /// If the given instruction is inside of the loop and it can be hoisted, do
 
  /// so to make it trivially loop-invariant.
 
  /// Return true if \c I is already loop-invariant, and false if \c I can't
 
  /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is
 
  /// set to true. This function can be used as a slightly more aggressive
 
  /// replacement for isLoopInvariant.
 
  ///
 
  /// If InsertPt is specified, it is the point to hoist instructions to.
 
  /// If null, the terminator of the loop preheader is used.
 
  ///
 
  bool makeLoopInvariant(Instruction *I, bool &Changed,
 
                         Instruction *InsertPt = nullptr,
 
                         MemorySSAUpdater *MSSAU = nullptr,
 
                         ScalarEvolution *SE = nullptr) const;
 
 
 
  /// Check to see if the loop has a canonical induction variable: an integer
 
  /// recurrence that starts at 0 and increments by one each time through the
 
  /// loop. If so, return the phi node that corresponds to it.
 
  ///
 
  /// The IndVarSimplify pass transforms loops to have a canonical induction
 
  /// variable.
 
  ///
 
  PHINode *getCanonicalInductionVariable() const;
 
 
 
  /// Get the latch condition instruction.
 
  ICmpInst *getLatchCmpInst() const;
 
 
 
  /// Obtain the unique incoming and back edge. Return false if they are
 
  /// non-unique or the loop is dead; otherwise, return true.
 
  bool getIncomingAndBackEdge(BasicBlock *&Incoming,
 
                              BasicBlock *&Backedge) const;
 
 
 
  /// Below are some utilities to get the loop guard, loop bounds and induction
 
  /// variable, and to check if a given phinode is an auxiliary induction
 
  /// variable, if the loop is guarded, and if the loop is canonical.
 
  ///
 
  /// Here is an example:
 
  /// \code
 
  /// for (int i = lb; i < ub; i+=step)
 
  ///   <loop body>
 
  /// --- pseudo LLVMIR ---
 
  /// beforeloop:
 
  ///   guardcmp = (lb < ub)
 
  ///   if (guardcmp) goto preheader; else goto afterloop
 
  /// preheader:
 
  /// loop:
 
  ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
 
  ///   <loop body>
 
  ///   i_2 = i_1 + step
 
  /// latch:
 
  ///   cmp = (i_2 < ub)
 
  ///   if (cmp) goto loop
 
  /// exit:
 
  /// afterloop:
 
  /// \endcode
 
  ///
 
  /// - getBounds
 
  ///   - getInitialIVValue      --> lb
 
  ///   - getStepInst            --> i_2 = i_1 + step
 
  ///   - getStepValue           --> step
 
  ///   - getFinalIVValue        --> ub
 
  ///   - getCanonicalPredicate  --> '<'
 
  ///   - getDirection           --> Increasing
 
  ///
 
  /// - getInductionVariable            --> i_1
 
  /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
 
  /// - getLoopGuardBranch()
 
  ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
 
  /// - isGuarded()                     --> true
 
  /// - isCanonical                     --> false
 
  struct LoopBounds {
 
    /// Return the LoopBounds object if
 
    /// - the given \p IndVar is an induction variable
 
    /// - the initial value of the induction variable can be found
 
    /// - the step instruction of the induction variable can be found
 
    /// - the final value of the induction variable can be found
 
    ///
 
    /// Else None.
 
    static std::optional<Loop::LoopBounds>
 
    getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE);
 
 
 
    /// Get the initial value of the loop induction variable.
 
    Value &getInitialIVValue() const { return InitialIVValue; }
 
 
 
    /// Get the instruction that updates the loop induction variable.
 
    Instruction &getStepInst() const { return StepInst; }
 
 
 
    /// Get the step that the loop induction variable gets updated by in each
 
    /// loop iteration. Return nullptr if not found.
 
    Value *getStepValue() const { return StepValue; }
 
 
 
    /// Get the final value of the loop induction variable.
 
    Value &getFinalIVValue() const { return FinalIVValue; }
 
 
 
    /// Return the canonical predicate for the latch compare instruction, if
 
    /// able to be calcuated. Else BAD_ICMP_PREDICATE.
 
    ///
 
    /// A predicate is considered as canonical if requirements below are all
 
    /// satisfied:
 
    /// 1. The first successor of the latch branch is the loop header
 
    ///    If not, inverse the predicate.
 
    /// 2. One of the operands of the latch comparison is StepInst
 
    ///    If not, and
 
    ///    - if the current calcuated predicate is not ne or eq, flip the
 
    ///      predicate.
 
    ///    - else if the loop is increasing, return slt
 
    ///      (notice that it is safe to change from ne or eq to sign compare)
 
    ///    - else if the loop is decreasing, return sgt
 
    ///      (notice that it is safe to change from ne or eq to sign compare)
 
    ///
 
    /// Here is an example when both (1) and (2) are not satisfied:
 
    /// \code
 
    /// loop.header:
 
    ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
 
    ///  %inc = add %iv, %step
 
    ///  %cmp = slt %iv, %finaliv
 
    ///  br %cmp, %loop.exit, %loop.header
 
    /// loop.exit:
 
    /// \endcode
 
    /// - The second successor of the latch branch is the loop header instead
 
    ///   of the first successor (slt -> sge)
 
    /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
 
    ///   instead of the StepInst (%inc) (sge -> sgt)
 
    ///
 
    /// The predicate would be sgt if both (1) and (2) are satisfied.
 
    /// getCanonicalPredicate() returns sgt for this example.
 
    /// Note: The IR is not changed.
 
    ICmpInst::Predicate getCanonicalPredicate() const;
 
 
 
    /// An enum for the direction of the loop
 
    /// - for (int i = 0; i < ub; ++i)  --> Increasing
 
    /// - for (int i = ub; i > 0; --i)  --> Descresing
 
    /// - for (int i = x; i != y; i+=z) --> Unknown
 
    enum class Direction { Increasing, Decreasing, Unknown };
 
 
 
    /// Get the direction of the loop.
 
    Direction getDirection() const;
 
 
 
  private:
 
    LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
 
               ScalarEvolution &SE)
 
        : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
 
          FinalIVValue(F), SE(SE) {}
 
 
 
    const Loop &L;
 
 
 
    // The initial value of the loop induction variable
 
    Value &InitialIVValue;
 
 
 
    // The instruction that updates the loop induction variable
 
    Instruction &StepInst;
 
 
 
    // The value that the loop induction variable gets updated by in each loop
 
    // iteration
 
    Value *StepValue;
 
 
 
    // The final value of the loop induction variable
 
    Value &FinalIVValue;
 
 
 
    ScalarEvolution &SE;
 
  };
 
 
 
  /// Return the struct LoopBounds collected if all struct members are found,
 
  /// else std::nullopt.
 
  std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
 
 
 
  /// Return the loop induction variable if found, else return nullptr.
 
  /// An instruction is considered as the loop induction variable if
 
  /// - it is an induction variable of the loop; and
 
  /// - it is used to determine the condition of the branch in the loop latch
 
  ///
 
  /// Note: the induction variable doesn't need to be canonical, i.e. starts at
 
  /// zero and increments by one each time through the loop (but it can be).
 
  PHINode *getInductionVariable(ScalarEvolution &SE) const;
 
 
 
  /// Get the loop induction descriptor for the loop induction variable. Return
 
  /// true if the loop induction variable is found.
 
  bool getInductionDescriptor(ScalarEvolution &SE,
 
                              InductionDescriptor &IndDesc) const;
 
 
 
  /// Return true if the given PHINode \p AuxIndVar is
 
  /// - in the loop header
 
  /// - not used outside of the loop
 
  /// - incremented by a loop invariant step for each loop iteration
 
  /// - step instruction opcode should be add or sub
 
  /// Note: auxiliary induction variable is not required to be used in the
 
  ///       conditional branch in the loop latch. (but it can be)
 
  bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
 
                                    ScalarEvolution &SE) const;
 
 
 
  /// Return the loop guard branch, if it exists.
 
  ///
 
  /// This currently only works on simplified loop, as it requires a preheader
 
  /// and a latch to identify the guard. It will work on loops of the form:
 
  /// \code
 
  /// GuardBB:
 
  ///   br cond1, Preheader, ExitSucc <== GuardBranch
 
  /// Preheader:
 
  ///   br Header
 
  /// Header:
 
  ///  ...
 
  ///   br Latch
 
  /// Latch:
 
  ///   br cond2, Header, ExitBlock
 
  /// ExitBlock:
 
  ///   br ExitSucc
 
  /// ExitSucc:
 
  /// \endcode
 
  BranchInst *getLoopGuardBranch() const;
 
 
 
  /// Return true iff the loop is
 
  /// - in simplify rotated form, and
 
  /// - guarded by a loop guard branch.
 
  bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
 
 
 
  /// Return true if the loop is in rotated form.
 
  ///
 
  /// This does not check if the loop was rotated by loop rotation, instead it
 
  /// only checks if the loop is in rotated form (has a valid latch that exists
 
  /// the loop).
 
  bool isRotatedForm() const {
 
    assert(!isInvalid() && "Loop not in a valid state!");
 
    BasicBlock *Latch = getLoopLatch();
 
    return Latch && isLoopExiting(Latch);
 
  }
 
 
 
  /// Return true if the loop induction variable starts at zero and increments
 
  /// by one each time through the loop.
 
  bool isCanonical(ScalarEvolution &SE) const;
 
 
 
  /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to
 
  /// true, token values defined inside loop are allowed to violate LCSSA form.
 
  bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const;
 
 
 
  /// Return true if this Loop and all inner subloops are in LCSSA form. If \p
 
  /// IgnoreTokens is set to true, token values defined inside loop are allowed
 
  /// to violate LCSSA form.
 
  bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI,
 
                              bool IgnoreTokens = true) const;
 
 
 
  /// Return true if the Loop is in the form that the LoopSimplify form
 
  /// transforms loops to, which is sometimes called normal form.
 
  bool isLoopSimplifyForm() const;
 
 
 
  /// Return true if the loop body is safe to clone in practice.
 
  bool isSafeToClone() const;
 
 
 
  /// Returns true if the loop is annotated parallel.
 
  ///
 
  /// A parallel loop can be assumed to not contain any dependencies between
 
  /// iterations by the compiler. That is, any loop-carried dependency checking
 
  /// can be skipped completely when parallelizing the loop on the target
 
  /// machine. Thus, if the parallel loop information originates from the
 
  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
 
  /// programmer's responsibility to ensure there are no loop-carried
 
  /// dependencies. The final execution order of the instructions across
 
  /// iterations is not guaranteed, thus, the end result might or might not
 
  /// implement actual concurrent execution of instructions across multiple
 
  /// iterations.
 
  bool isAnnotatedParallel() const;
 
 
 
  /// Return the llvm.loop loop id metadata node for this loop if it is present.
 
  ///
 
  /// If this loop contains the same llvm.loop metadata on each branch to the
 
  /// header then the node is returned. If any latch instruction does not
 
  /// contain llvm.loop or if multiple latches contain different nodes then
 
  /// 0 is returned.
 
  MDNode *getLoopID() const;
 
  /// Set the llvm.loop loop id metadata for this loop.
 
  ///
 
  /// The LoopID metadata node will be added to each terminator instruction in
 
  /// the loop that branches to the loop header.
 
  ///
 
  /// The LoopID metadata node should have one or more operands and the first
 
  /// operand should be the node itself.
 
  void setLoopID(MDNode *LoopID) const;
 
 
 
  /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
 
  ///
 
  /// Remove existing unroll metadata and add unroll disable metadata to
 
  /// indicate the loop has already been unrolled.  This prevents a loop
 
  /// from being unrolled more than is directed by a pragma if the loop
 
  /// unrolling pass is run more than once (which it generally is).
 
  void setLoopAlreadyUnrolled();
 
 
 
  /// Add llvm.loop.mustprogress to this loop's loop id metadata.
 
  void setLoopMustProgress();
 
 
 
  void dump() const;
 
  void dumpVerbose() const;
 
 
 
  /// Return the debug location of the start of this loop.
 
  /// This looks for a BB terminating instruction with a known debug
 
  /// location by looking at the preheader and header blocks. If it
 
  /// cannot find a terminating instruction with location information,
 
  /// it returns an unknown location.
 
  DebugLoc getStartLoc() const;
 
 
 
  /// Return the source code span of the loop.
 
  LocRange getLocRange() const;
 
 
 
  StringRef getName() const {
 
    if (BasicBlock *Header = getHeader())
 
      if (Header->hasName())
 
        return Header->getName();
 
    return "<unnamed loop>";
 
  }
 
 
 
private:
 
  Loop() = default;
 
 
 
  friend class LoopInfoBase<BasicBlock, Loop>;
 
  friend class LoopBase<BasicBlock, Loop>;
 
  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
 
  ~Loop() = default;
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// This class builds and contains all of the top-level loop
 
/// structures in the specified function.
 
///
 
 
 
template <class BlockT, class LoopT> class LoopInfoBase {
 
  // BBMap - Mapping of basic blocks to the inner most loop they occur in
 
  DenseMap<const BlockT *, LoopT *> BBMap;
 
  std::vector<LoopT *> TopLevelLoops;
 
  BumpPtrAllocator LoopAllocator;
 
 
 
  friend class LoopBase<BlockT, LoopT>;
 
  friend class LoopInfo;
 
 
 
  void operator=(const LoopInfoBase &) = delete;
 
  LoopInfoBase(const LoopInfoBase &) = delete;
 
 
 
public:
 
  LoopInfoBase() = default;
 
  ~LoopInfoBase() { releaseMemory(); }
 
 
 
  LoopInfoBase(LoopInfoBase &&Arg)
 
      : BBMap(std::move(Arg.BBMap)),
 
        TopLevelLoops(std::move(Arg.TopLevelLoops)),
 
        LoopAllocator(std::move(Arg.LoopAllocator)) {
 
    // We have to clear the arguments top level loops as we've taken ownership.
 
    Arg.TopLevelLoops.clear();
 
  }
 
  LoopInfoBase &operator=(LoopInfoBase &&RHS) {
 
    BBMap = std::move(RHS.BBMap);
 
 
 
    for (auto *L : TopLevelLoops)
 
      L->~LoopT();
 
 
 
    TopLevelLoops = std::move(RHS.TopLevelLoops);
 
    LoopAllocator = std::move(RHS.LoopAllocator);
 
    RHS.TopLevelLoops.clear();
 
    return *this;
 
  }
 
 
 
  void releaseMemory() {
 
    BBMap.clear();
 
 
 
    for (auto *L : TopLevelLoops)
 
      L->~LoopT();
 
    TopLevelLoops.clear();
 
    LoopAllocator.Reset();
 
  }
 
 
 
  template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
 
    LoopT *Storage = LoopAllocator.Allocate<LoopT>();
 
    return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
 
  }
 
 
 
  /// iterator/begin/end - The interface to the top-level loops in the current
 
  /// function.
 
  ///
 
  typedef typename std::vector<LoopT *>::const_iterator iterator;
 
  typedef
 
      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
 
  iterator begin() const { return TopLevelLoops.begin(); }
 
  iterator end() const { return TopLevelLoops.end(); }
 
  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
 
  reverse_iterator rend() const { return TopLevelLoops.rend(); }
 
  bool empty() const { return TopLevelLoops.empty(); }
 
 
 
  /// Return all of the loops in the function in preorder across the loop
 
  /// nests, with siblings in forward program order.
 
  ///
 
  /// Note that because loops form a forest of trees, preorder is equivalent to
 
  /// reverse postorder.
 
  SmallVector<LoopT *, 4> getLoopsInPreorder() const;
 
 
 
  /// Return all of the loops in the function in preorder across the loop
 
  /// nests, with siblings in *reverse* program order.
 
  ///
 
  /// Note that because loops form a forest of trees, preorder is equivalent to
 
  /// reverse postorder.
 
  ///
 
  /// Also note that this is *not* a reverse preorder. Only the siblings are in
 
  /// reverse program order.
 
  SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
 
 
 
  /// Return the inner most loop that BB lives in. If a basic block is in no
 
  /// loop (for example the entry node), null is returned.
 
  LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
 
 
 
  /// Same as getLoopFor.
 
  const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
 
 
 
  /// Return the loop nesting level of the specified block. A depth of 0 means
 
  /// the block is not inside any loop.
 
  unsigned getLoopDepth(const BlockT *BB) const {
 
    const LoopT *L = getLoopFor(BB);
 
    return L ? L->getLoopDepth() : 0;
 
  }
 
 
 
  // True if the block is a loop header node
 
  bool isLoopHeader(const BlockT *BB) const {
 
    const LoopT *L = getLoopFor(BB);
 
    return L && L->getHeader() == BB;
 
  }
 
 
 
  /// Return the top-level loops.
 
  const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
 
 
 
  /// Return the top-level loops.
 
  std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
 
 
 
  /// This removes the specified top-level loop from this loop info object.
 
  /// The loop is not deleted, as it will presumably be inserted into
 
  /// another loop.
 
  LoopT *removeLoop(iterator I) {
 
    assert(I != end() && "Cannot remove end iterator!");
 
    LoopT *L = *I;
 
    assert(L->isOutermost() && "Not a top-level loop!");
 
    TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
 
    return L;
 
  }
 
 
 
  /// Change the top-level loop that contains BB to the specified loop.
 
  /// This should be used by transformations that restructure the loop hierarchy
 
  /// tree.
 
  void changeLoopFor(BlockT *BB, LoopT *L) {
 
    if (!L) {
 
      BBMap.erase(BB);
 
      return;
 
    }
 
    BBMap[BB] = L;
 
  }
 
 
 
  /// Replace the specified loop in the top-level loops list with the indicated
 
  /// loop.
 
  void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
 
    auto I = find(TopLevelLoops, OldLoop);
 
    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
 
    *I = NewLoop;
 
    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
 
           "Loops already embedded into a subloop!");
 
  }
 
 
 
  /// This adds the specified loop to the collection of top-level loops.
 
  void addTopLevelLoop(LoopT *New) {
 
    assert(New->isOutermost() && "Loop already in subloop!");
 
    TopLevelLoops.push_back(New);
 
  }
 
 
 
  /// This method completely removes BB from all data structures,
 
  /// including all of the Loop objects it is nested in and our mapping from
 
  /// BasicBlocks to loops.
 
  void removeBlock(BlockT *BB) {
 
    auto I = BBMap.find(BB);
 
    if (I != BBMap.end()) {
 
      for (LoopT *L = I->second; L; L = L->getParentLoop())
 
        L->removeBlockFromLoop(BB);
 
 
 
      BBMap.erase(I);
 
    }
 
  }
 
 
 
  // Internals
 
 
 
  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
 
                                      const LoopT *ParentLoop) {
 
    if (!SubLoop)
 
      return true;
 
    if (SubLoop == ParentLoop)
 
      return false;
 
    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
 
  }
 
 
 
  /// Create the loop forest using a stable algorithm.
 
  void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
 
 
 
  // Debugging
 
  void print(raw_ostream &OS) const;
 
 
 
  void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
 
 
 
  /// Destroy a loop that has been removed from the `LoopInfo` nest.
 
  ///
 
  /// This runs the destructor of the loop object making it invalid to
 
  /// reference afterward. The memory is retained so that the *pointer* to the
 
  /// loop remains valid.
 
  ///
 
  /// The caller is responsible for removing this loop from the loop nest and
 
  /// otherwise disconnecting it from the broader `LoopInfo` data structures.
 
  /// Callers that don't naturally handle this themselves should probably call
 
  /// `erase' instead.
 
  void destroy(LoopT *L) {
 
    L->~LoopT();
 
 
 
    // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
 
    // \c L, but the pointer remains valid for non-dereferencing uses.
 
    LoopAllocator.Deallocate(L);
 
  }
 
};
 
 
 
// Implementation in LoopInfoImpl.h
 
extern template class LoopInfoBase<BasicBlock, Loop>;
 
 
 
class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
 
  typedef LoopInfoBase<BasicBlock, Loop> BaseT;
 
 
 
  friend class LoopBase<BasicBlock, Loop>;
 
 
 
  void operator=(const LoopInfo &) = delete;
 
  LoopInfo(const LoopInfo &) = delete;
 
 
 
public:
 
  LoopInfo() = default;
 
  explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
 
 
 
  LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
 
  LoopInfo &operator=(LoopInfo &&RHS) {
 
    BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
 
    return *this;
 
  }
 
 
 
  /// Handle invalidation explicitly.
 
  bool invalidate(Function &F, const PreservedAnalyses &PA,
 
                  FunctionAnalysisManager::Invalidator &);
 
 
 
  // Most of the public interface is provided via LoopInfoBase.
 
 
 
  /// Update LoopInfo after removing the last backedge from a loop. This updates
 
  /// the loop forest and parent loops for each block so that \c L is no longer
 
  /// referenced, but does not actually delete \c L immediately. The pointer
 
  /// will remain valid until this LoopInfo's memory is released.
 
  void erase(Loop *L);
 
 
 
  /// Returns true if replacing From with To everywhere is guaranteed to
 
  /// preserve LCSSA form.
 
  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
 
    // Preserving LCSSA form is only problematic if the replacing value is an
 
    // instruction.
 
    Instruction *I = dyn_cast<Instruction>(To);
 
    if (!I)
 
      return true;
 
    // If both instructions are defined in the same basic block then replacement
 
    // cannot break LCSSA form.
 
    if (I->getParent() == From->getParent())
 
      return true;
 
    // If the instruction is not defined in a loop then it can safely replace
 
    // anything.
 
    Loop *ToLoop = getLoopFor(I->getParent());
 
    if (!ToLoop)
 
      return true;
 
    // If the replacing instruction is defined in the same loop as the original
 
    // instruction, or in a loop that contains it as an inner loop, then using
 
    // it as a replacement will not break LCSSA form.
 
    return ToLoop->contains(getLoopFor(From->getParent()));
 
  }
 
 
 
  /// Checks if moving a specific instruction can break LCSSA in any loop.
 
  ///
 
  /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
 
  /// assuming that the function containing \p Inst and \p NewLoc is currently
 
  /// in LCSSA form.
 
  bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
 
    assert(Inst->getFunction() == NewLoc->getFunction() &&
 
           "Can't reason about IPO!");
 
 
 
    auto *OldBB = Inst->getParent();
 
    auto *NewBB = NewLoc->getParent();
 
 
 
    // Movement within the same loop does not break LCSSA (the equality check is
 
    // to avoid doing a hashtable lookup in case of intra-block movement).
 
    if (OldBB == NewBB)
 
      return true;
 
 
 
    auto *OldLoop = getLoopFor(OldBB);
 
    auto *NewLoop = getLoopFor(NewBB);
 
 
 
    if (OldLoop == NewLoop)
 
      return true;
 
 
 
    // Check if Outer contains Inner; with the null loop counting as the
 
    // "outermost" loop.
 
    auto Contains = [](const Loop *Outer, const Loop *Inner) {
 
      return !Outer || Outer->contains(Inner);
 
    };
 
 
 
    // To check that the movement of Inst to before NewLoc does not break LCSSA,
 
    // we need to check two sets of uses for possible LCSSA violations at
 
    // NewLoc: the users of NewInst, and the operands of NewInst.
 
 
 
    // If we know we're hoisting Inst out of an inner loop to an outer loop,
 
    // then the uses *of* Inst don't need to be checked.
 
 
 
    if (!Contains(NewLoop, OldLoop)) {
 
      for (Use &U : Inst->uses()) {
 
        auto *UI = cast<Instruction>(U.getUser());
 
        auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
 
                                     : UI->getParent();
 
        if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
 
          return false;
 
      }
 
    }
 
 
 
    // If we know we're sinking Inst from an outer loop into an inner loop, then
 
    // the *operands* of Inst don't need to be checked.
 
 
 
    if (!Contains(OldLoop, NewLoop)) {
 
      // See below on why we can't handle phi nodes here.
 
      if (isa<PHINode>(Inst))
 
        return false;
 
 
 
      for (Use &U : Inst->operands()) {
 
        auto *DefI = dyn_cast<Instruction>(U.get());
 
        if (!DefI)
 
          return false;
 
 
 
        // This would need adjustment if we allow Inst to be a phi node -- the
 
        // new use block won't simply be NewBB.
 
 
 
        auto *DefBlock = DefI->getParent();
 
        if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
 
          return false;
 
      }
 
    }
 
 
 
    return true;
 
  }
 
 
 
  // Return true if a new use of V added in ExitBB would require an LCSSA PHI
 
  // to be inserted at the begining of the block.  Note that V is assumed to
 
  // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
 
  // IR is assumed to be in LCSSA form before the planned insertion.
 
  bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
 
                                         const BasicBlock *ExitBB) const;
 
 
 
};
 
 
 
/// Enable verification of loop info.
 
///
 
/// The flag enables checks which are expensive and are disabled by default
 
/// unless the `EXPENSIVE_CHECKS` macro is defined.  The `-verify-loop-info`
 
/// flag allows the checks to be enabled selectively without re-compilation.
 
extern bool VerifyLoopInfo;
 
 
 
// Allow clients to walk the list of nested loops...
 
template <> struct GraphTraits<const Loop *> {
 
  typedef const Loop *NodeRef;
 
  typedef LoopInfo::iterator ChildIteratorType;
 
 
 
  static NodeRef getEntryNode(const Loop *L) { return L; }
 
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
 
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
 
};
 
 
 
template <> struct GraphTraits<Loop *> {
 
  typedef Loop *NodeRef;
 
  typedef LoopInfo::iterator ChildIteratorType;
 
 
 
  static NodeRef getEntryNode(Loop *L) { return L; }
 
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
 
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
 
};
 
 
 
/// Analysis pass that exposes the \c LoopInfo for a function.
 
class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
 
  friend AnalysisInfoMixin<LoopAnalysis>;
 
  static AnalysisKey Key;
 
 
 
public:
 
  typedef LoopInfo Result;
 
 
 
  LoopInfo run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Printer pass for the \c LoopAnalysis results.
 
class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
 
  raw_ostream &OS;
 
 
 
public:
 
  explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
 
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Verifier pass for the \c LoopAnalysis results.
 
struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
 
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// The legacy pass manager's analysis pass to compute loop information.
 
class LoopInfoWrapperPass : public FunctionPass {
 
  LoopInfo LI;
 
 
 
public:
 
  static char ID; // Pass identification, replacement for typeid
 
 
 
  LoopInfoWrapperPass();
 
 
 
  LoopInfo &getLoopInfo() { return LI; }
 
  const LoopInfo &getLoopInfo() const { return LI; }
 
 
 
  /// Calculate the natural loop information for a given function.
 
  bool runOnFunction(Function &F) override;
 
 
 
  void verifyAnalysis() const override;
 
 
 
  void releaseMemory() override { LI.releaseMemory(); }
 
 
 
  void print(raw_ostream &O, const Module *M = nullptr) const override;
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
};
 
 
 
/// Function to print a loop's contents as LLVM's text IR assembly.
 
void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
 
 
 
/// Find and return the loop attribute node for the attribute @p Name in
 
/// @p LoopID. Return nullptr if there is no such attribute.
 
MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
 
 
 
/// Find string metadata for a loop.
 
///
 
/// Returns the MDNode where the first operand is the metadata's name. The
 
/// following operands are the metadata's values. If no metadata with @p Name is
 
/// found, return nullptr.
 
MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
 
 
 
std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
 
                                                 StringRef Name);
 
 
 
/// Returns true if Name is applied to TheLoop and enabled.
 
bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name);
 
 
 
/// Find named metadata for a loop with an integer value.
 
std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop,
 
                                               StringRef Name);
 
 
 
/// Find named metadata for a loop with an integer value. Return \p Default if
 
/// not set.
 
int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0);
 
 
 
/// Find string metadata for loop
 
///
 
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
 
/// operand or null otherwise.  If the string metadata is not found return
 
/// Optional's not-a-value.
 
std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
 
                                                           StringRef Name);
 
 
 
/// Look for the loop attribute that requires progress within the loop.
 
/// Note: Most consumers probably want "isMustProgress" which checks
 
/// the containing function attribute too.
 
bool hasMustProgress(const Loop *L);
 
 
 
/// Return true if this loop can be assumed to make progress.  (i.e. can't
 
/// be infinite without side effects without also being undefined)
 
bool isMustProgress(const Loop *L);
 
 
 
/// Return true if this loop can be assumed to run for a finite number of
 
/// iterations.
 
bool isFinite(const Loop *L);
 
 
 
/// Return whether an MDNode might represent an access group.
 
///
 
/// Access group metadata nodes have to be distinct and empty. Being
 
/// always-empty ensures that it never needs to be changed (which -- because
 
/// MDNodes are designed immutable -- would require creating a new MDNode). Note
 
/// that this is not a sufficient condition: not every distinct and empty NDNode
 
/// is representing an access group.
 
bool isValidAsAccessGroup(MDNode *AccGroup);
 
 
 
/// Create a new LoopID after the loop has been transformed.
 
///
 
/// This can be used when no follow-up loop attributes are defined
 
/// (llvm::makeFollowupLoopID returning None) to stop transformations to be
 
/// applied again.
 
///
 
/// @param Context        The LLVMContext in which to create the new LoopID.
 
/// @param OrigLoopID     The original LoopID; can be nullptr if the original
 
///                       loop has no LoopID.
 
/// @param RemovePrefixes Remove all loop attributes that have these prefixes.
 
///                       Use to remove metadata of the transformation that has
 
///                       been applied.
 
/// @param AddAttrs       Add these loop attributes to the new LoopID.
 
///
 
/// @return A new LoopID that can be applied using Loop::setLoopID().
 
llvm::MDNode *
 
makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
 
                               llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
 
                               llvm::ArrayRef<llvm::MDNode *> AddAttrs);
 
 
 
} // End llvm namespace
 
 
 
#endif