//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the interface for the loop memory dependence framework that
 
// was originally developed for the Loop Vectorizer.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
 
#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
 
 
 
#include "llvm/ADT/EquivalenceClasses.h"
 
#include "llvm/Analysis/LoopAnalysisManager.h"
 
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 
#include "llvm/IR/DiagnosticInfo.h"
 
#include "llvm/Pass.h"
 
#include <optional>
 
 
 
namespace llvm {
 
 
 
class AAResults;
 
class DataLayout;
 
class Loop;
 
class LoopAccessInfo;
 
class raw_ostream;
 
class SCEV;
 
class SCEVUnionPredicate;
 
class Value;
 
 
 
/// Collection of parameters shared beetween the Loop Vectorizer and the
 
/// Loop Access Analysis.
 
struct VectorizerParams {
 
  /// Maximum SIMD width.
 
  static const unsigned MaxVectorWidth;
 
 
 
  /// VF as overridden by the user.
 
  static unsigned VectorizationFactor;
 
  /// Interleave factor as overridden by the user.
 
  static unsigned VectorizationInterleave;
 
  /// True if force-vector-interleave was specified by the user.
 
  static bool isInterleaveForced();
 
 
 
  /// \When performing memory disambiguation checks at runtime do not
 
  /// make more than this number of comparisons.
 
  static unsigned RuntimeMemoryCheckThreshold;
 
};
 
 
 
/// Checks memory dependences among accesses to the same underlying
 
/// object to determine whether there vectorization is legal or not (and at
 
/// which vectorization factor).
 
///
 
/// Note: This class will compute a conservative dependence for access to
 
/// different underlying pointers. Clients, such as the loop vectorizer, will
 
/// sometimes deal these potential dependencies by emitting runtime checks.
 
///
 
/// We use the ScalarEvolution framework to symbolically evalutate access
 
/// functions pairs. Since we currently don't restructure the loop we can rely
 
/// on the program order of memory accesses to determine their safety.
 
/// At the moment we will only deem accesses as safe for:
 
///  * A negative constant distance assuming program order.
 
///
 
///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
 
///            a[i] = tmp;                y = a[i];
 
///
 
///   The latter case is safe because later checks guarantuee that there can't
 
///   be a cycle through a phi node (that is, we check that "x" and "y" is not
 
///   the same variable: a header phi can only be an induction or a reduction, a
 
///   reduction can't have a memory sink, an induction can't have a memory
 
///   source). This is important and must not be violated (or we have to
 
///   resort to checking for cycles through memory).
 
///
 
///  * A positive constant distance assuming program order that is bigger
 
///    than the biggest memory access.
 
///
 
///     tmp = a[i]        OR              b[i] = x
 
///     a[i+2] = tmp                      y = b[i+2];
 
///
 
///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
 
///
 
///  * Zero distances and all accesses have the same size.
 
///
 
class MemoryDepChecker {
 
public:
 
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
 
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
 
  /// Set of potential dependent memory accesses.
 
  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
 
 
 
  /// Type to keep track of the status of the dependence check. The order of
 
  /// the elements is important and has to be from most permissive to least
 
  /// permissive.
 
  enum class VectorizationSafetyStatus {
 
    // Can vectorize safely without RT checks. All dependences are known to be
 
    // safe.
 
    Safe,
 
    // Can possibly vectorize with RT checks to overcome unknown dependencies.
 
    PossiblySafeWithRtChecks,
 
    // Cannot vectorize due to known unsafe dependencies.
 
    Unsafe,
 
  };
 
 
 
  /// Dependece between memory access instructions.
 
  struct Dependence {
 
    /// The type of the dependence.
 
    enum DepType {
 
      // No dependence.
 
      NoDep,
 
      // We couldn't determine the direction or the distance.
 
      Unknown,
 
      // Lexically forward.
 
      //
 
      // FIXME: If we only have loop-independent forward dependences (e.g. a
 
      // read and write of A[i]), LAA will locally deem the dependence "safe"
 
      // without querying the MemoryDepChecker.  Therefore we can miss
 
      // enumerating loop-independent forward dependences in
 
      // getDependences.  Note that as soon as there are different
 
      // indices used to access the same array, the MemoryDepChecker *is*
 
      // queried and the dependence list is complete.
 
      Forward,
 
      // Forward, but if vectorized, is likely to prevent store-to-load
 
      // forwarding.
 
      ForwardButPreventsForwarding,
 
      // Lexically backward.
 
      Backward,
 
      // Backward, but the distance allows a vectorization factor of
 
      // MaxSafeDepDistBytes.
 
      BackwardVectorizable,
 
      // Same, but may prevent store-to-load forwarding.
 
      BackwardVectorizableButPreventsForwarding
 
    };
 
 
 
    /// String version of the types.
 
    static const char *DepName[];
 
 
 
    /// Index of the source of the dependence in the InstMap vector.
 
    unsigned Source;
 
    /// Index of the destination of the dependence in the InstMap vector.
 
    unsigned Destination;
 
    /// The type of the dependence.
 
    DepType Type;
 
 
 
    Dependence(unsigned Source, unsigned Destination, DepType Type)
 
        : Source(Source), Destination(Destination), Type(Type) {}
 
 
 
    /// Return the source instruction of the dependence.
 
    Instruction *getSource(const LoopAccessInfo &LAI) const;
 
    /// Return the destination instruction of the dependence.
 
    Instruction *getDestination(const LoopAccessInfo &LAI) const;
 
 
 
    /// Dependence types that don't prevent vectorization.
 
    static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
 
 
 
    /// Lexically forward dependence.
 
    bool isForward() const;
 
    /// Lexically backward dependence.
 
    bool isBackward() const;
 
 
 
    /// May be a lexically backward dependence type (includes Unknown).
 
    bool isPossiblyBackward() const;
 
 
 
    /// Print the dependence.  \p Instr is used to map the instruction
 
    /// indices to instructions.
 
    void print(raw_ostream &OS, unsigned Depth,
 
               const SmallVectorImpl<Instruction *> &Instrs) const;
 
  };
 
 
 
  MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
 
      : PSE(PSE), InnermostLoop(L) {}
 
 
 
  /// Register the location (instructions are given increasing numbers)
 
  /// of a write access.
 
  void addAccess(StoreInst *SI);
 
 
 
  /// Register the location (instructions are given increasing numbers)
 
  /// of a write access.
 
  void addAccess(LoadInst *LI);
 
 
 
  /// Check whether the dependencies between the accesses are safe.
 
  ///
 
  /// Only checks sets with elements in \p CheckDeps.
 
  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
 
                   const ValueToValueMap &Strides);
 
 
 
  /// No memory dependence was encountered that would inhibit
 
  /// vectorization.
 
  bool isSafeForVectorization() const {
 
    return Status == VectorizationSafetyStatus::Safe;
 
  }
 
 
 
  /// Return true if the number of elements that are safe to operate on
 
  /// simultaneously is not bounded.
 
  bool isSafeForAnyVectorWidth() const {
 
    return MaxSafeVectorWidthInBits == UINT_MAX;
 
  }
 
 
 
  /// The maximum number of bytes of a vector register we can vectorize
 
  /// the accesses safely with.
 
  uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
 
 
 
  /// Return the number of elements that are safe to operate on
 
  /// simultaneously, multiplied by the size of the element in bits.
 
  uint64_t getMaxSafeVectorWidthInBits() const {
 
    return MaxSafeVectorWidthInBits;
 
  }
 
 
 
  /// In same cases when the dependency check fails we can still
 
  /// vectorize the loop with a dynamic array access check.
 
  bool shouldRetryWithRuntimeCheck() const {
 
    return FoundNonConstantDistanceDependence &&
 
           Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
 
  }
 
 
 
  /// Returns the memory dependences.  If null is returned we exceeded
 
  /// the MaxDependences threshold and this information is not
 
  /// available.
 
  const SmallVectorImpl<Dependence> *getDependences() const {
 
    return RecordDependences ? &Dependences : nullptr;
 
  }
 
 
 
  void clearDependences() { Dependences.clear(); }
 
 
 
  /// The vector of memory access instructions.  The indices are used as
 
  /// instruction identifiers in the Dependence class.
 
  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
 
    return InstMap;
 
  }
 
 
 
  /// Generate a mapping between the memory instructions and their
 
  /// indices according to program order.
 
  DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
 
    DenseMap<Instruction *, unsigned> OrderMap;
 
 
 
    for (unsigned I = 0; I < InstMap.size(); ++I)
 
      OrderMap[InstMap[I]] = I;
 
 
 
    return OrderMap;
 
  }
 
 
 
  /// Find the set of instructions that read or write via \p Ptr.
 
  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
 
                                                         bool isWrite) const;
 
 
 
  /// Return the program order indices for the access location (Ptr, IsWrite).
 
  /// Returns an empty ArrayRef if there are no accesses for the location.
 
  ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
 
    auto I = Accesses.find({Ptr, IsWrite});
 
    if (I != Accesses.end())
 
      return I->second;
 
    return {};
 
  }
 
 
 
  const Loop *getInnermostLoop() const { return InnermostLoop; }
 
 
 
private:
 
  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
 
  /// applies dynamic knowledge to simplify SCEV expressions and convert them
 
  /// to a more usable form. We need this in case assumptions about SCEV
 
  /// expressions need to be made in order to avoid unknown dependences. For
 
  /// example we might assume a unit stride for a pointer in order to prove
 
  /// that a memory access is strided and doesn't wrap.
 
  PredicatedScalarEvolution &PSE;
 
  const Loop *InnermostLoop;
 
 
 
  /// Maps access locations (ptr, read/write) to program order.
 
  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
 
 
 
  /// Memory access instructions in program order.
 
  SmallVector<Instruction *, 16> InstMap;
 
 
 
  /// The program order index to be used for the next instruction.
 
  unsigned AccessIdx = 0;
 
 
 
  // We can access this many bytes in parallel safely.
 
  uint64_t MaxSafeDepDistBytes = 0;
 
 
 
  /// Number of elements (from consecutive iterations) that are safe to
 
  /// operate on simultaneously, multiplied by the size of the element in bits.
 
  /// The size of the element is taken from the memory access that is most
 
  /// restrictive.
 
  uint64_t MaxSafeVectorWidthInBits = -1U;
 
 
 
  /// If we see a non-constant dependence distance we can still try to
 
  /// vectorize this loop with runtime checks.
 
  bool FoundNonConstantDistanceDependence = false;
 
 
 
  /// Result of the dependence checks, indicating whether the checked
 
  /// dependences are safe for vectorization, require RT checks or are known to
 
  /// be unsafe.
 
  VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
 
 
 
  //// True if Dependences reflects the dependences in the
 
  //// loop.  If false we exceeded MaxDependences and
 
  //// Dependences is invalid.
 
  bool RecordDependences = true;
 
 
 
  /// Memory dependences collected during the analysis.  Only valid if
 
  /// RecordDependences is true.
 
  SmallVector<Dependence, 8> Dependences;
 
 
 
  /// Check whether there is a plausible dependence between the two
 
  /// accesses.
 
  ///
 
  /// Access \p A must happen before \p B in program order. The two indices
 
  /// identify the index into the program order map.
 
  ///
 
  /// This function checks  whether there is a plausible dependence (or the
 
  /// absence of such can't be proved) between the two accesses. If there is a
 
  /// plausible dependence but the dependence distance is bigger than one
 
  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
 
  /// distance is smaller than any other distance encountered so far).
 
  /// Otherwise, this function returns true signaling a possible dependence.
 
  Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
 
                                  const MemAccessInfo &B, unsigned BIdx,
 
                                  const ValueToValueMap &Strides);
 
 
 
  /// Check whether the data dependence could prevent store-load
 
  /// forwarding.
 
  ///
 
  /// \return false if we shouldn't vectorize at all or avoid larger
 
  /// vectorization factors by limiting MaxSafeDepDistBytes.
 
  bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
 
 
 
  /// Updates the current safety status with \p S. We can go from Safe to
 
  /// either PossiblySafeWithRtChecks or Unsafe and from
 
  /// PossiblySafeWithRtChecks to Unsafe.
 
  void mergeInStatus(VectorizationSafetyStatus S);
 
};
 
 
 
class RuntimePointerChecking;
 
/// A grouping of pointers. A single memcheck is required between
 
/// two groups.
 
struct RuntimeCheckingPtrGroup {
 
  /// Create a new pointer checking group containing a single
 
  /// pointer, with index \p Index in RtCheck.
 
  RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
 
 
 
  /// Tries to add the pointer recorded in RtCheck at index
 
  /// \p Index to this pointer checking group. We can only add a pointer
 
  /// to a checking group if we will still be able to get
 
  /// the upper and lower bounds of the check. Returns true in case
 
  /// of success, false otherwise.
 
  bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
 
  bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
 
                  unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
 
 
 
  /// The SCEV expression which represents the upper bound of all the
 
  /// pointers in this group.
 
  const SCEV *High;
 
  /// The SCEV expression which represents the lower bound of all the
 
  /// pointers in this group.
 
  const SCEV *Low;
 
  /// Indices of all the pointers that constitute this grouping.
 
  SmallVector<unsigned, 2> Members;
 
  /// Address space of the involved pointers.
 
  unsigned AddressSpace;
 
  /// Whether the pointer needs to be frozen after expansion, e.g. because it
 
  /// may be poison outside the loop.
 
  bool NeedsFreeze = false;
 
};
 
 
 
/// A memcheck which made up of a pair of grouped pointers.
 
typedef std::pair<const RuntimeCheckingPtrGroup *,
 
                  const RuntimeCheckingPtrGroup *>
 
    RuntimePointerCheck;
 
 
 
struct PointerDiffInfo {
 
  const SCEV *SrcStart;
 
  const SCEV *SinkStart;
 
  unsigned AccessSize;
 
  bool NeedsFreeze;
 
 
 
  PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
 
                  unsigned AccessSize, bool NeedsFreeze)
 
      : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
 
        NeedsFreeze(NeedsFreeze) {}
 
};
 
 
 
/// Holds information about the memory runtime legality checks to verify
 
/// that a group of pointers do not overlap.
 
class RuntimePointerChecking {
 
  friend struct RuntimeCheckingPtrGroup;
 
 
 
public:
 
  struct PointerInfo {
 
    /// Holds the pointer value that we need to check.
 
    TrackingVH<Value> PointerValue;
 
    /// Holds the smallest byte address accessed by the pointer throughout all
 
    /// iterations of the loop.
 
    const SCEV *Start;
 
    /// Holds the largest byte address accessed by the pointer throughout all
 
    /// iterations of the loop, plus 1.
 
    const SCEV *End;
 
    /// Holds the information if this pointer is used for writing to memory.
 
    bool IsWritePtr;
 
    /// Holds the id of the set of pointers that could be dependent because of a
 
    /// shared underlying object.
 
    unsigned DependencySetId;
 
    /// Holds the id of the disjoint alias set to which this pointer belongs.
 
    unsigned AliasSetId;
 
    /// SCEV for the access.
 
    const SCEV *Expr;
 
    /// True if the pointer expressions needs to be frozen after expansion.
 
    bool NeedsFreeze;
 
 
 
    PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
 
                bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
 
                const SCEV *Expr, bool NeedsFreeze)
 
        : PointerValue(PointerValue), Start(Start), End(End),
 
          IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
 
          AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
 
  };
 
 
 
  RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
 
      : DC(DC), SE(SE) {}
 
 
 
  /// Reset the state of the pointer runtime information.
 
  void reset() {
 
    Need = false;
 
    Pointers.clear();
 
    Checks.clear();
 
  }
 
 
 
  /// Insert a pointer and calculate the start and end SCEVs.
 
  /// We need \p PSE in order to compute the SCEV expression of the pointer
 
  /// according to the assumptions that we've made during the analysis.
 
  /// The method might also version the pointer stride according to \p Strides,
 
  /// and add new predicates to \p PSE.
 
  void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
 
              bool WritePtr, unsigned DepSetId, unsigned ASId,
 
              PredicatedScalarEvolution &PSE, bool NeedsFreeze);
 
 
 
  /// No run-time memory checking is necessary.
 
  bool empty() const { return Pointers.empty(); }
 
 
 
  /// Generate the checks and store it.  This also performs the grouping
 
  /// of pointers to reduce the number of memchecks necessary.
 
  void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
 
                      bool UseDependencies);
 
 
 
  /// Returns the checks that generateChecks created. They can be used to ensure
 
  /// no read/write accesses overlap across all loop iterations.
 
  const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
 
    return Checks;
 
  }
 
 
 
  // Returns an optional list of (pointer-difference expressions, access size)
 
  // pairs that can be used to prove that there are no vectorization-preventing
 
  // dependencies at runtime. There are is a vectorization-preventing dependency
 
  // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
 
  // std::nullopt if pointer-difference checks cannot be used.
 
  std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
 
    if (!CanUseDiffCheck)
 
      return std::nullopt;
 
    return {DiffChecks};
 
  }
 
 
 
  /// Decide if we need to add a check between two groups of pointers,
 
  /// according to needsChecking.
 
  bool needsChecking(const RuntimeCheckingPtrGroup &M,
 
                     const RuntimeCheckingPtrGroup &N) const;
 
 
 
  /// Returns the number of run-time checks required according to
 
  /// needsChecking.
 
  unsigned getNumberOfChecks() const { return Checks.size(); }
 
 
 
  /// Print the list run-time memory checks necessary.
 
  void print(raw_ostream &OS, unsigned Depth = 0) const;
 
 
 
  /// Print \p Checks.
 
  void printChecks(raw_ostream &OS,
 
                   const SmallVectorImpl<RuntimePointerCheck> &Checks,
 
                   unsigned Depth = 0) const;
 
 
 
  /// This flag indicates if we need to add the runtime check.
 
  bool Need = false;
 
 
 
  /// Information about the pointers that may require checking.
 
  SmallVector<PointerInfo, 2> Pointers;
 
 
 
  /// Holds a partitioning of pointers into "check groups".
 
  SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
 
 
 
  /// Check if pointers are in the same partition
 
  ///
 
  /// \p PtrToPartition contains the partition number for pointers (-1 if the
 
  /// pointer belongs to multiple partitions).
 
  static bool
 
  arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
 
                             unsigned PtrIdx1, unsigned PtrIdx2);
 
 
 
  /// Decide whether we need to issue a run-time check for pointer at
 
  /// index \p I and \p J to prove their independence.
 
  bool needsChecking(unsigned I, unsigned J) const;
 
 
 
  /// Return PointerInfo for pointer at index \p PtrIdx.
 
  const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
 
    return Pointers[PtrIdx];
 
  }
 
 
 
  ScalarEvolution *getSE() const { return SE; }
 
 
 
private:
 
  /// Groups pointers such that a single memcheck is required
 
  /// between two different groups. This will clear the CheckingGroups vector
 
  /// and re-compute it. We will only group dependecies if \p UseDependencies
 
  /// is true, otherwise we will create a separate group for each pointer.
 
  void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
 
                   bool UseDependencies);
 
 
 
  /// Generate the checks and return them.
 
  SmallVector<RuntimePointerCheck, 4> generateChecks();
 
 
 
  /// Try to create add a new (pointer-difference, access size) pair to
 
  /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
 
  /// checks cannot be used for the groups, set CanUseDiffCheck to false.
 
  void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
 
                            const RuntimeCheckingPtrGroup &CGJ);
 
 
 
  MemoryDepChecker &DC;
 
 
 
  /// Holds a pointer to the ScalarEvolution analysis.
 
  ScalarEvolution *SE;
 
 
 
  /// Set of run-time checks required to establish independence of
 
  /// otherwise may-aliasing pointers in the loop.
 
  SmallVector<RuntimePointerCheck, 4> Checks;
 
 
 
  /// Flag indicating if pointer-difference checks can be used
 
  bool CanUseDiffCheck = true;
 
 
 
  /// A list of (pointer-difference, access size) pairs that can be used to
 
  /// prove that there are no vectorization-preventing dependencies.
 
  SmallVector<PointerDiffInfo> DiffChecks;
 
};
 
 
 
/// Drive the analysis of memory accesses in the loop
 
///
 
/// This class is responsible for analyzing the memory accesses of a loop.  It
 
/// collects the accesses and then its main helper the AccessAnalysis class
 
/// finds and categorizes the dependences in buildDependenceSets.
 
///
 
/// For memory dependences that can be analyzed at compile time, it determines
 
/// whether the dependence is part of cycle inhibiting vectorization.  This work
 
/// is delegated to the MemoryDepChecker class.
 
///
 
/// For memory dependences that cannot be determined at compile time, it
 
/// generates run-time checks to prove independence.  This is done by
 
/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
 
/// RuntimePointerCheck class.
 
///
 
/// If pointers can wrap or can't be expressed as affine AddRec expressions by
 
/// ScalarEvolution, we will generate run-time checks by emitting a
 
/// SCEVUnionPredicate.
 
///
 
/// Checks for both memory dependences and the SCEV predicates contained in the
 
/// PSE must be emitted in order for the results of this analysis to be valid.
 
class LoopAccessInfo {
 
public:
 
  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
 
                 AAResults *AA, DominatorTree *DT, LoopInfo *LI);
 
 
 
  /// Return true we can analyze the memory accesses in the loop and there are
 
  /// no memory dependence cycles.
 
  bool canVectorizeMemory() const { return CanVecMem; }
 
 
 
  /// Return true if there is a convergent operation in the loop. There may
 
  /// still be reported runtime pointer checks that would be required, but it is
 
  /// not legal to insert them.
 
  bool hasConvergentOp() const { return HasConvergentOp; }
 
 
 
  const RuntimePointerChecking *getRuntimePointerChecking() const {
 
    return PtrRtChecking.get();
 
  }
 
 
 
  /// Number of memchecks required to prove independence of otherwise
 
  /// may-alias pointers.
 
  unsigned getNumRuntimePointerChecks() const {
 
    return PtrRtChecking->getNumberOfChecks();
 
  }
 
 
 
  /// Return true if the block BB needs to be predicated in order for the loop
 
  /// to be vectorized.
 
  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
 
                                    DominatorTree *DT);
 
 
 
  /// Returns true if the value V is uniform within the loop.
 
  bool isUniform(Value *V) const;
 
 
 
  uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
 
  unsigned getNumStores() const { return NumStores; }
 
  unsigned getNumLoads() const { return NumLoads;}
 
 
 
  /// The diagnostics report generated for the analysis.  E.g. why we
 
  /// couldn't analyze the loop.
 
  const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
 
 
 
  /// the Memory Dependence Checker which can determine the
 
  /// loop-independent and loop-carried dependences between memory accesses.
 
  const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
 
 
 
  /// Return the list of instructions that use \p Ptr to read or write
 
  /// memory.
 
  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
 
                                                         bool isWrite) const {
 
    return DepChecker->getInstructionsForAccess(Ptr, isWrite);
 
  }
 
 
 
  /// If an access has a symbolic strides, this maps the pointer value to
 
  /// the stride symbol.
 
  const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
 
 
 
  /// Pointer has a symbolic stride.
 
  bool hasStride(Value *V) const { return StrideSet.count(V); }
 
 
 
  /// Print the information about the memory accesses in the loop.
 
  void print(raw_ostream &OS, unsigned Depth = 0) const;
 
 
 
  /// If the loop has memory dependence involving an invariant address, i.e. two
 
  /// stores or a store and a load, then return true, else return false.
 
  bool hasDependenceInvolvingLoopInvariantAddress() const {
 
    return HasDependenceInvolvingLoopInvariantAddress;
 
  }
 
 
 
  /// Return the list of stores to invariant addresses.
 
  ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
 
    return StoresToInvariantAddresses;
 
  }
 
 
 
  /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
 
  /// them to a more usable form.  All SCEV expressions during the analysis
 
  /// should be re-written (and therefore simplified) according to PSE.
 
  /// A user of LoopAccessAnalysis will need to emit the runtime checks
 
  /// associated with this predicate.
 
  const PredicatedScalarEvolution &getPSE() const { return *PSE; }
 
 
 
private:
 
  /// Analyze the loop.
 
  void analyzeLoop(AAResults *AA, LoopInfo *LI,
 
                   const TargetLibraryInfo *TLI, DominatorTree *DT);
 
 
 
  /// Check if the structure of the loop allows it to be analyzed by this
 
  /// pass.
 
  bool canAnalyzeLoop();
 
 
 
  /// Save the analysis remark.
 
  ///
 
  /// LAA does not directly emits the remarks.  Instead it stores it which the
 
  /// client can retrieve and presents as its own analysis
 
  /// (e.g. -Rpass-analysis=loop-vectorize).
 
  OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
 
                                             Instruction *Instr = nullptr);
 
 
 
  /// Collect memory access with loop invariant strides.
 
  ///
 
  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
 
  /// invariant.
 
  void collectStridedAccess(Value *LoadOrStoreInst);
 
 
 
  // Emits the first unsafe memory dependence in a loop.
 
  // Emits nothing if there are no unsafe dependences
 
  // or if the dependences were not recorded.
 
  void emitUnsafeDependenceRemark();
 
 
 
  std::unique_ptr<PredicatedScalarEvolution> PSE;
 
 
 
  /// We need to check that all of the pointers in this list are disjoint
 
  /// at runtime. Using std::unique_ptr to make using move ctor simpler.
 
  std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
 
 
 
  /// the Memory Dependence Checker which can determine the
 
  /// loop-independent and loop-carried dependences between memory accesses.
 
  std::unique_ptr<MemoryDepChecker> DepChecker;
 
 
 
  Loop *TheLoop;
 
 
 
  unsigned NumLoads = 0;
 
  unsigned NumStores = 0;
 
 
 
  uint64_t MaxSafeDepDistBytes = -1;
 
 
 
  /// Cache the result of analyzeLoop.
 
  bool CanVecMem = false;
 
  bool HasConvergentOp = false;
 
 
 
  /// Indicator that there are non vectorizable stores to a uniform address.
 
  bool HasDependenceInvolvingLoopInvariantAddress = false;
 
 
 
  /// List of stores to invariant addresses.
 
  SmallVector<StoreInst *> StoresToInvariantAddresses;
 
 
 
  /// The diagnostics report generated for the analysis.  E.g. why we
 
  /// couldn't analyze the loop.
 
  std::unique_ptr<OptimizationRemarkAnalysis> Report;
 
 
 
  /// If an access has a symbolic strides, this maps the pointer value to
 
  /// the stride symbol.
 
  ValueToValueMap SymbolicStrides;
 
 
 
  /// Set of symbolic strides values.
 
  SmallPtrSet<Value *, 8> StrideSet;
 
};
 
 
 
Value *stripIntegerCast(Value *V);
 
 
 
/// Return the SCEV corresponding to a pointer with the symbolic stride
 
/// replaced with constant one, assuming the SCEV predicate associated with
 
/// \p PSE is true.
 
///
 
/// If necessary this method will version the stride of the pointer according
 
/// to \p PtrToStride and therefore add further predicates to \p PSE.
 
///
 
/// \p PtrToStride provides the mapping between the pointer value and its
 
/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
 
const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
 
                                      const ValueToValueMap &PtrToStride,
 
                                      Value *Ptr);
 
 
 
/// If the pointer has a constant stride return it in units of the access type
 
/// size.  Otherwise return std::nullopt.
 
///
 
/// Ensure that it does not wrap in the address space, assuming the predicate
 
/// associated with \p PSE is true.
 
///
 
/// If necessary this method will version the stride of the pointer according
 
/// to \p PtrToStride and therefore add further predicates to \p PSE.
 
/// The \p Assume parameter indicates if we are allowed to make additional
 
/// run-time assumptions.
 
std::optional<int64_t>
 
getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
 
             const Loop *Lp,
 
             const ValueToValueMap &StridesMap = ValueToValueMap(),
 
             bool Assume = false, bool ShouldCheckWrap = true);
 
 
 
/// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
 
/// compatible and it is possible to calculate the distance between them. This
 
/// is a simple API that does not depend on the analysis pass.
 
/// \param StrictCheck Ensure that the calculated distance matches the
 
/// type-based one after all the bitcasts removal in the provided pointers.
 
std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
 
                                   Value *PtrB, const DataLayout &DL,
 
                                   ScalarEvolution &SE,
 
                                   bool StrictCheck = false,
 
                                   bool CheckType = true);
 
 
 
/// Attempt to sort the pointers in \p VL and return the sorted indices
 
/// in \p SortedIndices, if reordering is required.
 
///
 
/// Returns 'true' if sorting is legal, otherwise returns 'false'.
 
///
 
/// For example, for a given \p VL of memory accesses in program order, a[i+4],
 
/// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
 
/// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
 
/// saves the mask for actual memory accesses in program order in
 
/// \p SortedIndices as <1,2,0,3>
 
bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
 
                     ScalarEvolution &SE,
 
                     SmallVectorImpl<unsigned> &SortedIndices);
 
 
 
/// Returns true if the memory operations \p A and \p B are consecutive.
 
/// This is a simple API that does not depend on the analysis pass.
 
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
 
                         ScalarEvolution &SE, bool CheckType = true);
 
 
 
class LoopAccessInfoManager {
 
  /// The cache.
 
  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
 
 
 
  // The used analysis passes.
 
  ScalarEvolution &SE;
 
  AAResults &AA;
 
  DominatorTree &DT;
 
  LoopInfo &LI;
 
  const TargetLibraryInfo *TLI = nullptr;
 
 
 
public:
 
  LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT,
 
                        LoopInfo &LI, const TargetLibraryInfo *TLI)
 
      : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {}
 
 
 
  const LoopAccessInfo &getInfo(Loop &L);
 
 
 
  void clear() { LoopAccessInfoMap.clear(); }
 
};
 
 
 
/// This analysis provides dependence information for the memory accesses
 
/// of a loop.
 
///
 
/// It runs the analysis for a loop on demand.  This can be initiated by
 
/// querying the loop access info via LAA::getInfo.  getInfo return a
 
/// LoopAccessInfo object.  See this class for the specifics of what information
 
/// is provided.
 
class LoopAccessLegacyAnalysis : public FunctionPass {
 
public:
 
  static char ID;
 
 
 
  LoopAccessLegacyAnalysis();
 
 
 
  bool runOnFunction(Function &F) override;
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
 
 
  /// Return the proxy object for retrieving LoopAccessInfo for individual
 
  /// loops.
 
  ///
 
  /// If there is no cached result available run the analysis.
 
  LoopAccessInfoManager &getLAIs() { return *LAIs; }
 
 
 
  void releaseMemory() override {
 
    // Invalidate the cache when the pass is freed.
 
    LAIs->clear();
 
  }
 
 
 
private:
 
  std::unique_ptr<LoopAccessInfoManager> LAIs;
 
};
 
 
 
/// This analysis provides dependence information for the memory
 
/// accesses of a loop.
 
///
 
/// It runs the analysis for a loop on demand.  This can be initiated by
 
/// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
 
/// getResult return a LoopAccessInfo object.  See this class for the
 
/// specifics of what information is provided.
 
class LoopAccessAnalysis
 
    : public AnalysisInfoMixin<LoopAccessAnalysis> {
 
  friend AnalysisInfoMixin<LoopAccessAnalysis>;
 
  static AnalysisKey Key;
 
 
 
public:
 
  typedef LoopAccessInfoManager Result;
 
 
 
  Result run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
inline Instruction *MemoryDepChecker::Dependence::getSource(
 
    const LoopAccessInfo &LAI) const {
 
  return LAI.getDepChecker().getMemoryInstructions()[Source];
 
}
 
 
 
inline Instruction *MemoryDepChecker::Dependence::getDestination(
 
    const LoopAccessInfo &LAI) const {
 
  return LAI.getDepChecker().getMemoryInstructions()[Destination];
 
}
 
 
 
} // End llvm namespace
 
 
 
#endif