//===- Loads.h - Local load analysis --------------------------------------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file declares simple local analyses for load instructions.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_LOADS_H
 
#define LLVM_ANALYSIS_LOADS_H
 
 
 
#include "llvm/IR/BasicBlock.h"
 
#include "llvm/Support/CommandLine.h"
 
 
 
namespace llvm {
 
 
 
class AAResults;
 
class AssumptionCache;
 
class DataLayout;
 
class DominatorTree;
 
class Instruction;
 
class LoadInst;
 
class Loop;
 
class MemoryLocation;
 
class ScalarEvolution;
 
class TargetLibraryInfo;
 
 
 
/// Return true if this is always a dereferenceable pointer. If the context
 
/// instruction is specified perform context-sensitive analysis and return true
 
/// if the pointer is dereferenceable at the specified instruction.
 
bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL,
 
                              const Instruction *CtxI = nullptr,
 
                              AssumptionCache *AC = nullptr,
 
                              const DominatorTree *DT = nullptr,
 
                              const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Returns true if V is always a dereferenceable pointer with alignment
 
/// greater or equal than requested. If the context instruction is specified
 
/// performs context-sensitive analysis and returns true if the pointer is
 
/// dereferenceable at the specified instruction.
 
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
 
                                        Align Alignment, const DataLayout &DL,
 
                                        const Instruction *CtxI = nullptr,
 
                                        AssumptionCache *AC = nullptr,
 
                                        const DominatorTree *DT = nullptr,
 
                                        const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Returns true if V is always dereferenceable for Size byte with alignment
 
/// greater or equal than requested. If the context instruction is specified
 
/// performs context-sensitive analysis and returns true if the pointer is
 
/// dereferenceable at the specified instruction.
 
bool isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
 
                                        const APInt &Size, const DataLayout &DL,
 
                                        const Instruction *CtxI = nullptr,
 
                                        AssumptionCache *AC = nullptr,
 
                                        const DominatorTree *DT = nullptr,
 
                                        const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Return true if we know that executing a load from this value cannot trap.
 
///
 
/// If DT and ScanFrom are specified this method performs context-sensitive
 
/// analysis and returns true if it is safe to load immediately before ScanFrom.
 
///
 
/// If it is not obviously safe to load from the specified pointer, we do a
 
/// quick local scan of the basic block containing ScanFrom, to determine if
 
/// the address is already accessed.
 
bool isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
 
                                 const DataLayout &DL,
 
                                 Instruction *ScanFrom = nullptr,
 
                                 AssumptionCache *AC = nullptr,
 
                                 const DominatorTree *DT = nullptr,
 
                                 const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// Return true if we can prove that the given load (which is assumed to be
 
/// within the specified loop) would access only dereferenceable memory, and
 
/// be properly aligned on every iteration of the specified loop regardless of
 
/// its placement within the loop. (i.e. does not require predication beyond
 
/// that required by the header itself and could be hoisted into the header
 
/// if desired.)  This is more powerful than the variants above when the
 
/// address loaded from is analyzeable by SCEV.
 
bool isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
 
                                       ScalarEvolution &SE, DominatorTree &DT,
 
                                       AssumptionCache *AC = nullptr);
 
 
 
/// Return true if we know that executing a load from this value cannot trap.
 
///
 
/// If DT and ScanFrom are specified this method performs context-sensitive
 
/// analysis and returns true if it is safe to load immediately before ScanFrom.
 
///
 
/// If it is not obviously safe to load from the specified pointer, we do a
 
/// quick local scan of the basic block containing ScanFrom, to determine if
 
/// the address is already accessed.
 
bool isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
 
                                 const DataLayout &DL,
 
                                 Instruction *ScanFrom = nullptr,
 
                                 AssumptionCache *AC = nullptr,
 
                                 const DominatorTree *DT = nullptr,
 
                                 const TargetLibraryInfo *TLI = nullptr);
 
 
 
/// The default number of maximum instructions to scan in the block, used by
 
/// FindAvailableLoadedValue().
 
extern cl::opt<unsigned> DefMaxInstsToScan;
 
 
 
/// Scan backwards to see if we have the value of the given load available
 
/// locally within a small number of instructions.
 
///
 
/// You can use this function to scan across multiple blocks: after you call
 
/// this function, if ScanFrom points at the beginning of the block, it's safe
 
/// to continue scanning the predecessors.
 
///
 
/// Note that performing load CSE requires special care to make sure the
 
/// metadata is set appropriately.  In particular, aliasing metadata needs
 
/// to be merged.  (This doesn't matter for store-to-load forwarding because
 
/// the only relevant load gets deleted.)
 
///
 
/// \param Load The load we want to replace.
 
/// \param ScanBB The basic block to scan.
 
/// \param [in,out] ScanFrom The location to start scanning from. When this
 
/// function returns, it points at the last instruction scanned.
 
/// \param MaxInstsToScan The maximum number of instructions to scan. If this
 
/// is zero, the whole block will be scanned.
 
/// \param AA Optional pointer to alias analysis, to make the scan more
 
/// precise.
 
/// \param [out] IsLoadCSE Whether the returned value is a load from the same
 
/// location in memory, as opposed to the value operand of a store.
 
///
 
/// \returns The found value, or nullptr if no value is found.
 
Value *FindAvailableLoadedValue(LoadInst *Load,
 
                                BasicBlock *ScanBB,
 
                                BasicBlock::iterator &ScanFrom,
 
                                unsigned MaxInstsToScan = DefMaxInstsToScan,
 
                                AAResults *AA = nullptr,
 
                                bool *IsLoadCSE = nullptr,
 
                                unsigned *NumScanedInst = nullptr);
 
 
 
/// This overload provides a more efficient implementation of
 
/// FindAvailableLoadedValue() for the case where we are not interested in
 
/// finding the closest clobbering instruction if no available load is found.
 
/// This overload cannot be used to scan across multiple blocks.
 
Value *FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, bool *IsLoadCSE,
 
                                unsigned MaxInstsToScan = DefMaxInstsToScan);
 
 
 
/// Scan backwards to see if we have the value of the given pointer available
 
/// locally within a small number of instructions.
 
///
 
/// You can use this function to scan across multiple blocks: after you call
 
/// this function, if ScanFrom points at the beginning of the block, it's safe
 
/// to continue scanning the predecessors.
 
///
 
/// \param Loc The location we want the load and store to originate from.
 
/// \param AccessTy The access type of the pointer.
 
/// \param AtLeastAtomic Are we looking for at-least an atomic load/store ? In
 
/// case it is false, we can return an atomic or non-atomic load or store. In
 
/// case it is true, we need to return an atomic load or store.
 
/// \param ScanBB The basic block to scan.
 
/// \param [in,out] ScanFrom The location to start scanning from. When this
 
/// function returns, it points at the last instruction scanned.
 
/// \param MaxInstsToScan The maximum number of instructions to scan. If this
 
/// is zero, the whole block will be scanned.
 
/// \param AA Optional pointer to alias analysis, to make the scan more
 
/// precise.
 
/// \param [out] IsLoadCSE Whether the returned value is a load from the same
 
/// location in memory, as opposed to the value operand of a store.
 
///
 
/// \returns The found value, or nullptr if no value is found.
 
Value *findAvailablePtrLoadStore(const MemoryLocation &Loc, Type *AccessTy,
 
                                 bool AtLeastAtomic, BasicBlock *ScanBB,
 
                                 BasicBlock::iterator &ScanFrom,
 
                                 unsigned MaxInstsToScan, AAResults *AA,
 
                                 bool *IsLoadCSE, unsigned *NumScanedInst);
 
 
 
/// Returns true if a pointer value \p A can be replace with another pointer
 
/// value \B if they are deemed equal through some means (e.g. information from
 
/// conditions).
 
/// NOTE: the current implementations is incomplete and unsound. It does not
 
/// reject all invalid cases yet, but will be made stricter in the future. In
 
/// particular this means returning true means unknown if replacement is safe.
 
bool canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
 
                               Instruction *CtxI);
 
}
 
 
 
#endif