- //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// \file 
- /// 
- /// Implements a lazy call graph analysis and related passes for the new pass 
- /// manager. 
- /// 
- /// NB: This is *not* a traditional call graph! It is a graph which models both 
- /// the current calls and potential calls. As a consequence there are many 
- /// edges in this call graph that do not correspond to a 'call' or 'invoke' 
- /// instruction. 
- /// 
- /// The primary use cases of this graph analysis is to facilitate iterating 
- /// across the functions of a module in ways that ensure all callees are 
- /// visited prior to a caller (given any SCC constraints), or vice versa. As 
- /// such is it particularly well suited to organizing CGSCC optimizations such 
- /// as inlining, outlining, argument promotion, etc. That is its primary use 
- /// case and motivates the design. It may not be appropriate for other 
- /// purposes. The use graph of functions or some other conservative analysis of 
- /// call instructions may be interesting for optimizations and subsequent 
- /// analyses which don't work in the context of an overly specified 
- /// potential-call-edge graph. 
- /// 
- /// To understand the specific rules and nature of this call graph analysis, 
- /// see the documentation of the \c LazyCallGraph below. 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H 
- #define LLVM_ANALYSIS_LAZYCALLGRAPH_H 
-   
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/PointerIntPair.h" 
- #include "llvm/ADT/SetVector.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/ADT/StringRef.h" 
- #include "llvm/ADT/iterator.h" 
- #include "llvm/ADT/iterator_range.h" 
- #include "llvm/Analysis/TargetLibraryInfo.h" 
- #include "llvm/IR/PassManager.h" 
- #include "llvm/Support/Allocator.h" 
- #include "llvm/Support/raw_ostream.h" 
- #include <cassert> 
- #include <iterator> 
- #include <optional> 
- #include <string> 
- #include <utility> 
-   
- namespace llvm { 
-   
- class Constant; 
- class Function; 
- template <class GraphType> struct GraphTraits; 
- class Module; 
- class TargetLibraryInfo; 
- class Value; 
-   
- /// A lazily constructed view of the call graph of a module. 
- /// 
- /// With the edges of this graph, the motivating constraint that we are 
- /// attempting to maintain is that function-local optimization, CGSCC-local 
- /// optimizations, and optimizations transforming a pair of functions connected 
- /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC 
- /// DAG. That is, no optimizations will delete, remove, or add an edge such 
- /// that functions already visited in a bottom-up order of the SCC DAG are no 
- /// longer valid to have visited, or such that functions not yet visited in 
- /// a bottom-up order of the SCC DAG are not required to have already been 
- /// visited. 
- /// 
- /// Within this constraint, the desire is to minimize the merge points of the 
- /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points 
- /// in the SCC DAG, the more independence there is in optimizing within it. 
- /// There is a strong desire to enable parallelization of optimizations over 
- /// the call graph, and both limited fanout and merge points will (artificially 
- /// in some cases) limit the scaling of such an effort. 
- /// 
- /// To this end, graph represents both direct and any potential resolution to 
- /// an indirect call edge. Another way to think about it is that it represents 
- /// both the direct call edges and any direct call edges that might be formed 
- /// through static optimizations. Specifically, it considers taking the address 
- /// of a function to be an edge in the call graph because this might be 
- /// forwarded to become a direct call by some subsequent function-local 
- /// optimization. The result is that the graph closely follows the use-def 
- /// edges for functions. Walking "up" the graph can be done by looking at all 
- /// of the uses of a function. 
- /// 
- /// The roots of the call graph are the external functions and functions 
- /// escaped into global variables. Those functions can be called from outside 
- /// of the module or via unknowable means in the IR -- we may not be able to 
- /// form even a potential call edge from a function body which may dynamically 
- /// load the function and call it. 
- /// 
- /// This analysis still requires updates to remain valid after optimizations 
- /// which could potentially change the set of potential callees. The 
- /// constraints it operates under only make the traversal order remain valid. 
- /// 
- /// The entire analysis must be re-computed if full interprocedural 
- /// optimizations run at any point. For example, globalopt completely 
- /// invalidates the information in this analysis. 
- /// 
- /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish 
- /// it from the existing CallGraph. At some point, it is expected that this 
- /// will be the only call graph and it will be renamed accordingly. 
- class LazyCallGraph { 
- public: 
-   class Node; 
-   class EdgeSequence; 
-   class SCC; 
-   class RefSCC; 
-   
-   /// A class used to represent edges in the call graph. 
-   /// 
-   /// The lazy call graph models both *call* edges and *reference* edges. Call 
-   /// edges are much what you would expect, and exist when there is a 'call' or 
-   /// 'invoke' instruction of some function. Reference edges are also tracked 
-   /// along side these, and exist whenever any instruction (transitively 
-   /// through its operands) references a function. All call edges are 
-   /// inherently reference edges, and so the reference graph forms a superset 
-   /// of the formal call graph. 
-   /// 
-   /// All of these forms of edges are fundamentally represented as outgoing 
-   /// edges. The edges are stored in the source node and point at the target 
-   /// node. This allows the edge structure itself to be a very compact data 
-   /// structure: essentially a tagged pointer. 
-   class Edge { 
-   public: 
-     /// The kind of edge in the graph. 
-     enum Kind : bool { Ref = false, Call = true }; 
-   
-     Edge(); 
-     explicit Edge(Node &N, Kind K); 
-   
-     /// Test whether the edge is null. 
-     /// 
-     /// This happens when an edge has been deleted. We leave the edge objects 
-     /// around but clear them. 
-     explicit operator bool() const; 
-   
-     /// Returns the \c Kind of the edge. 
-     Kind getKind() const; 
-   
-     /// Test whether the edge represents a direct call to a function. 
-     /// 
-     /// This requires that the edge is not null. 
-     bool isCall() const; 
-   
-     /// Get the call graph node referenced by this edge. 
-     /// 
-     /// This requires that the edge is not null. 
-     Node &getNode() const; 
-   
-     /// Get the function referenced by this edge. 
-     /// 
-     /// This requires that the edge is not null. 
-     Function &getFunction() const; 
-   
-   private: 
-     friend class LazyCallGraph::EdgeSequence; 
-     friend class LazyCallGraph::RefSCC; 
-   
-     PointerIntPair<Node *, 1, Kind> Value; 
-   
-     void setKind(Kind K) { Value.setInt(K); } 
-   }; 
-   
-   /// The edge sequence object. 
-   /// 
-   /// This typically exists entirely within the node but is exposed as 
-   /// a separate type because a node doesn't initially have edges. An explicit 
-   /// population step is required to produce this sequence at first and it is 
-   /// then cached in the node. It is also used to represent edges entering the 
-   /// graph from outside the module to model the graph's roots. 
-   /// 
-   /// The sequence itself both iterable and indexable. The indexes remain 
-   /// stable even as the sequence mutates (including removal). 
-   class EdgeSequence { 
-     friend class LazyCallGraph; 
-     friend class LazyCallGraph::Node; 
-     friend class LazyCallGraph::RefSCC; 
-   
-     using VectorT = SmallVector<Edge, 4>; 
-     using VectorImplT = SmallVectorImpl<Edge>; 
-   
-   public: 
-     /// An iterator used for the edges to both entry nodes and child nodes. 
-     class iterator 
-         : public iterator_adaptor_base<iterator, VectorImplT::iterator, 
-                                        std::forward_iterator_tag> { 
-       friend class LazyCallGraph; 
-       friend class LazyCallGraph::Node; 
-   
-       VectorImplT::iterator E; 
-   
-       // Build the iterator for a specific position in the edge list. 
-       iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E) 
-           : iterator_adaptor_base(BaseI), E(E) { 
-         while (I != E && !*I) 
-           ++I; 
-       } 
-   
-     public: 
-       iterator() = default; 
-   
-       using iterator_adaptor_base::operator++; 
-       iterator &operator++() { 
-         do { 
-           ++I; 
-         } while (I != E && !*I); 
-         return *this; 
-       } 
-     }; 
-   
-     /// An iterator over specifically call edges. 
-     /// 
-     /// This has the same iteration properties as the \c iterator, but 
-     /// restricts itself to edges which represent actual calls. 
-     class call_iterator 
-         : public iterator_adaptor_base<call_iterator, VectorImplT::iterator, 
-                                        std::forward_iterator_tag> { 
-       friend class LazyCallGraph; 
-       friend class LazyCallGraph::Node; 
-   
-       VectorImplT::iterator E; 
-   
-       /// Advance the iterator to the next valid, call edge. 
-       void advanceToNextEdge() { 
-         while (I != E && (!*I || !I->isCall())) 
-           ++I; 
-       } 
-   
-       // Build the iterator for a specific position in the edge list. 
-       call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E) 
-           : iterator_adaptor_base(BaseI), E(E) { 
-         advanceToNextEdge(); 
-       } 
-   
-     public: 
-       call_iterator() = default; 
-   
-       using iterator_adaptor_base::operator++; 
-       call_iterator &operator++() { 
-         ++I; 
-         advanceToNextEdge(); 
-         return *this; 
-       } 
-     }; 
-   
-     iterator begin() { return iterator(Edges.begin(), Edges.end()); } 
-     iterator end() { return iterator(Edges.end(), Edges.end()); } 
-   
-     Edge &operator[](Node &N) { 
-       assert(EdgeIndexMap.find(&N) != EdgeIndexMap.end() && "No such edge!"); 
-       auto &E = Edges[EdgeIndexMap.find(&N)->second]; 
-       assert(E && "Dead or null edge!"); 
-       return E; 
-     } 
-   
-     Edge *lookup(Node &N) { 
-       auto EI = EdgeIndexMap.find(&N); 
-       if (EI == EdgeIndexMap.end()) 
-         return nullptr; 
-       auto &E = Edges[EI->second]; 
-       return E ? &E : nullptr; 
-     } 
-   
-     call_iterator call_begin() { 
-       return call_iterator(Edges.begin(), Edges.end()); 
-     } 
-     call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); } 
-   
-     iterator_range<call_iterator> calls() { 
-       return make_range(call_begin(), call_end()); 
-     } 
-   
-     bool empty() { 
-       for (auto &E : Edges) 
-         if (E) 
-           return false; 
-   
-       return true; 
-     } 
-   
-   private: 
-     VectorT Edges; 
-     DenseMap<Node *, int> EdgeIndexMap; 
-   
-     EdgeSequence() = default; 
-   
-     /// Internal helper to insert an edge to a node. 
-     void insertEdgeInternal(Node &ChildN, Edge::Kind EK); 
-   
-     /// Internal helper to change an edge kind. 
-     void setEdgeKind(Node &ChildN, Edge::Kind EK); 
-   
-     /// Internal helper to remove the edge to the given function. 
-     bool removeEdgeInternal(Node &ChildN); 
-   }; 
-   
-   /// A node in the call graph. 
-   /// 
-   /// This represents a single node. Its primary roles are to cache the list of 
-   /// callees, de-duplicate and provide fast testing of whether a function is a 
-   /// callee, and facilitate iteration of child nodes in the graph. 
-   /// 
-   /// The node works much like an optional in order to lazily populate the 
-   /// edges of each node. Until populated, there are no edges. Once populated, 
-   /// you can access the edges by dereferencing the node or using the `->` 
-   /// operator as if the node was an `std::optional<EdgeSequence>`. 
-   class Node { 
-     friend class LazyCallGraph; 
-     friend class LazyCallGraph::RefSCC; 
-   
-   public: 
-     LazyCallGraph &getGraph() const { return *G; } 
-   
-     Function &getFunction() const { return *F; } 
-   
-     StringRef getName() const { return F->getName(); } 
-   
-     /// Equality is defined as address equality. 
-     bool operator==(const Node &N) const { return this == &N; } 
-     bool operator!=(const Node &N) const { return !operator==(N); } 
-   
-     /// Tests whether the node has been populated with edges. 
-     bool isPopulated() const { return Edges.has_value(); } 
-   
-     /// Tests whether this is actually a dead node and no longer valid. 
-     /// 
-     /// Users rarely interact with nodes in this state and other methods are 
-     /// invalid. This is used to model a node in an edge list where the 
-     /// function has been completely removed. 
-     bool isDead() const { 
-       assert(!G == !F && 
-              "Both graph and function pointers should be null or non-null."); 
-       return !G; 
-     } 
-   
-     // We allow accessing the edges by dereferencing or using the arrow 
-     // operator, essentially wrapping the internal optional. 
-     EdgeSequence &operator*() const { 
-       // Rip const off because the node itself isn't changing here. 
-       return const_cast<EdgeSequence &>(*Edges); 
-     } 
-     EdgeSequence *operator->() const { return &**this; } 
-   
-     /// Populate the edges of this node if necessary. 
-     /// 
-     /// The first time this is called it will populate the edges for this node 
-     /// in the graph. It does this by scanning the underlying function, so once 
-     /// this is done, any changes to that function must be explicitly reflected 
-     /// in updates to the graph. 
-     /// 
-     /// \returns the populated \c EdgeSequence to simplify walking it. 
-     /// 
-     /// This will not update or re-scan anything if called repeatedly. Instead, 
-     /// the edge sequence is cached and returned immediately on subsequent 
-     /// calls. 
-     EdgeSequence &populate() { 
-       if (Edges) 
-         return *Edges; 
-   
-       return populateSlow(); 
-     } 
-   
-   private: 
-     LazyCallGraph *G; 
-     Function *F; 
-   
-     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be 
-     // stored directly within the node. These are both '-1' when nodes are part 
-     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk. 
-     int DFSNumber = 0; 
-     int LowLink = 0; 
-   
-     std::optional<EdgeSequence> Edges; 
-   
-     /// Basic constructor implements the scanning of F into Edges and 
-     /// EdgeIndexMap. 
-     Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {} 
-   
-     /// Implementation of the scan when populating. 
-     EdgeSequence &populateSlow(); 
-   
-     /// Internal helper to directly replace the function with a new one. 
-     /// 
-     /// This is used to facilitate transformations which need to replace the 
-     /// formal Function object but directly move the body and users from one to 
-     /// the other. 
-     void replaceFunction(Function &NewF); 
-   
-     void clear() { Edges.reset(); } 
-   
-     /// Print the name of this node's function. 
-     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) { 
-       return OS << N.F->getName(); 
-     } 
-   
-     /// Dump the name of this node's function to stderr. 
-     void dump() const; 
-   }; 
-   
-   /// An SCC of the call graph. 
-   /// 
-   /// This represents a Strongly Connected Component of the direct call graph 
-   /// -- ignoring indirect calls and function references. It stores this as 
-   /// a collection of call graph nodes. While the order of nodes in the SCC is 
-   /// stable, it is not any particular order. 
-   /// 
-   /// The SCCs are nested within a \c RefSCC, see below for details about that 
-   /// outer structure. SCCs do not support mutation of the call graph, that 
-   /// must be done through the containing \c RefSCC in order to fully reason 
-   /// about the ordering and connections of the graph. 
-   class LLVM_EXTERNAL_VISIBILITY SCC { 
-     friend class LazyCallGraph; 
-     friend class LazyCallGraph::Node; 
-   
-     RefSCC *OuterRefSCC; 
-     SmallVector<Node *, 1> Nodes; 
-   
-     template <typename NodeRangeT> 
-     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes) 
-         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {} 
-   
-     void clear() { 
-       OuterRefSCC = nullptr; 
-       Nodes.clear(); 
-     } 
-   
-     /// Print a short description useful for debugging or logging. 
-     /// 
-     /// We print the function names in the SCC wrapped in '()'s and skipping 
-     /// the middle functions if there are a large number. 
-     // 
-     // Note: this is defined inline to dodge issues with GCC's interpretation 
-     // of enclosing namespaces for friend function declarations. 
-     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) { 
-       OS << '('; 
-       int I = 0; 
-       for (LazyCallGraph::Node &N : C) { 
-         if (I > 0) 
-           OS << ", "; 
-         // Elide the inner elements if there are too many. 
-         if (I > 8) { 
-           OS << "..., " << *C.Nodes.back(); 
-           break; 
-         } 
-         OS << N; 
-         ++I; 
-       } 
-       OS << ')'; 
-       return OS; 
-     } 
-   
-     /// Dump a short description of this SCC to stderr. 
-     void dump() const; 
-   
- #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 
-     /// Verify invariants about the SCC. 
-     /// 
-     /// This will attempt to validate all of the basic invariants within an 
-     /// SCC, but not that it is a strongly connected component per se. 
-     /// Primarily useful while building and updating the graph to check that 
-     /// basic properties are in place rather than having inexplicable crashes 
-     /// later. 
-     void verify(); 
- #endif 
-   
-   public: 
-     using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>; 
-   
-     iterator begin() const { return Nodes.begin(); } 
-     iterator end() const { return Nodes.end(); } 
-   
-     int size() const { return Nodes.size(); } 
-   
-     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; } 
-   
-     /// Test if this SCC is a parent of \a C. 
-     /// 
-     /// Note that this is linear in the number of edges departing the current 
-     /// SCC. 
-     bool isParentOf(const SCC &C) const; 
-   
-     /// Test if this SCC is an ancestor of \a C. 
-     /// 
-     /// Note that in the worst case this is linear in the number of edges 
-     /// departing the current SCC and every SCC in the entire graph reachable 
-     /// from this SCC. Thus this very well may walk every edge in the entire 
-     /// call graph! Do not call this in a tight loop! 
-     bool isAncestorOf(const SCC &C) const; 
-   
-     /// Test if this SCC is a child of \a C. 
-     /// 
-     /// See the comments for \c isParentOf for detailed notes about the 
-     /// complexity of this routine. 
-     bool isChildOf(const SCC &C) const { return C.isParentOf(*this); } 
-   
-     /// Test if this SCC is a descendant of \a C. 
-     /// 
-     /// See the comments for \c isParentOf for detailed notes about the 
-     /// complexity of this routine. 
-     bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); } 
-   
-     /// Provide a short name by printing this SCC to a std::string. 
-     /// 
-     /// This copes with the fact that we don't have a name per se for an SCC 
-     /// while still making the use of this in debugging and logging useful. 
-     std::string getName() const { 
-       std::string Name; 
-       raw_string_ostream OS(Name); 
-       OS << *this; 
-       OS.flush(); 
-       return Name; 
-     } 
-   }; 
-   
-   /// A RefSCC of the call graph. 
-   /// 
-   /// This models a Strongly Connected Component of function reference edges in 
-   /// the call graph. As opposed to actual SCCs, these can be used to scope 
-   /// subgraphs of the module which are independent from other subgraphs of the 
-   /// module because they do not reference it in any way. This is also the unit 
-   /// where we do mutation of the graph in order to restrict mutations to those 
-   /// which don't violate this independence. 
-   /// 
-   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC 
-   /// are necessarily within some actual SCC that nests within it. Since 
-   /// a direct call *is* a reference, there will always be at least one RefSCC 
-   /// around any SCC. 
-   /// 
-   /// Spurious ref edges, meaning ref edges that still exist in the call graph 
-   /// even though the corresponding IR reference no longer exists, are allowed. 
-   /// This is mostly to support argument promotion, which can modify a caller to 
-   /// no longer pass a function. The only place that needs to specially handle 
-   /// this is deleting a dead function/node, otherwise the dead ref edges are 
-   /// automatically removed when visiting the function/node no longer containing 
-   /// the ref edge. 
-   class RefSCC { 
-     friend class LazyCallGraph; 
-     friend class LazyCallGraph::Node; 
-   
-     LazyCallGraph *G; 
-   
-     /// A postorder list of the inner SCCs. 
-     SmallVector<SCC *, 4> SCCs; 
-   
-     /// A map from SCC to index in the postorder list. 
-     SmallDenseMap<SCC *, int, 4> SCCIndices; 
-   
-     /// Fast-path constructor. RefSCCs should instead be constructed by calling 
-     /// formRefSCCFast on the graph itself. 
-     RefSCC(LazyCallGraph &G); 
-   
-     void clear() { 
-       SCCs.clear(); 
-       SCCIndices.clear(); 
-     } 
-   
-     /// Print a short description useful for debugging or logging. 
-     /// 
-     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if 
-     /// there are a large number. 
-     // 
-     // Note: this is defined inline to dodge issues with GCC's interpretation 
-     // of enclosing namespaces for friend function declarations. 
-     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) { 
-       OS << '['; 
-       int I = 0; 
-       for (LazyCallGraph::SCC &C : RC) { 
-         if (I > 0) 
-           OS << ", "; 
-         // Elide the inner elements if there are too many. 
-         if (I > 4) { 
-           OS << "..., " << *RC.SCCs.back(); 
-           break; 
-         } 
-         OS << C; 
-         ++I; 
-       } 
-       OS << ']'; 
-       return OS; 
-     } 
-   
-     /// Dump a short description of this RefSCC to stderr. 
-     void dump() const; 
-   
- #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 
-     /// Verify invariants about the RefSCC and all its SCCs. 
-     /// 
-     /// This will attempt to validate all of the invariants *within* the 
-     /// RefSCC, but not that it is a strongly connected component of the larger 
-     /// graph. This makes it useful even when partially through an update. 
-     /// 
-     /// Invariants checked: 
-     /// - SCCs and their indices match. 
-     /// - The SCCs list is in fact in post-order. 
-     void verify(); 
- #endif 
-   
-   public: 
-     using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>; 
-     using range = iterator_range<iterator>; 
-     using parent_iterator = 
-         pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>; 
-   
-     iterator begin() const { return SCCs.begin(); } 
-     iterator end() const { return SCCs.end(); } 
-   
-     ssize_t size() const { return SCCs.size(); } 
-   
-     SCC &operator[](int Idx) { return *SCCs[Idx]; } 
-   
-     iterator find(SCC &C) const { 
-       return SCCs.begin() + SCCIndices.find(&C)->second; 
-     } 
-   
-     /// Test if this RefSCC is a parent of \a RC. 
-     /// 
-     /// CAUTION: This method walks every edge in the \c RefSCC, it can be very 
-     /// expensive. 
-     bool isParentOf(const RefSCC &RC) const; 
-   
-     /// Test if this RefSCC is an ancestor of \a RC. 
-     /// 
-     /// CAUTION: This method walks the directed graph of edges as far as 
-     /// necessary to find a possible path to the argument. In the worst case 
-     /// this may walk the entire graph and can be extremely expensive. 
-     bool isAncestorOf(const RefSCC &RC) const; 
-   
-     /// Test if this RefSCC is a child of \a RC. 
-     /// 
-     /// CAUTION: This method walks every edge in the argument \c RefSCC, it can 
-     /// be very expensive. 
-     bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); } 
-   
-     /// Test if this RefSCC is a descendant of \a RC. 
-     /// 
-     /// CAUTION: This method walks the directed graph of edges as far as 
-     /// necessary to find a possible path from the argument. In the worst case 
-     /// this may walk the entire graph and can be extremely expensive. 
-     bool isDescendantOf(const RefSCC &RC) const { 
-       return RC.isAncestorOf(*this); 
-     } 
-   
-     /// Provide a short name by printing this RefSCC to a std::string. 
-     /// 
-     /// This copes with the fact that we don't have a name per se for an RefSCC 
-     /// while still making the use of this in debugging and logging useful. 
-     std::string getName() const { 
-       std::string Name; 
-       raw_string_ostream OS(Name); 
-       OS << *this; 
-       OS.flush(); 
-       return Name; 
-     } 
-   
-     ///@{ 
-     /// \name Mutation API 
-     /// 
-     /// These methods provide the core API for updating the call graph in the 
-     /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs. 
-     /// 
-     /// Note that these methods sometimes have complex runtimes, so be careful 
-     /// how you call them. 
-   
-     /// Make an existing internal ref edge into a call edge. 
-     /// 
-     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC. 
-     /// If that happens, the optional callback \p MergedCB will be invoked (if 
-     /// provided) on the SCCs being merged away prior to actually performing 
-     /// the merge. Note that this will never include the target SCC as that 
-     /// will be the SCC functions are merged into to resolve the cycle. Once 
-     /// this function returns, these merged SCCs are not in a valid state but 
-     /// the pointers will remain valid until destruction of the parent graph 
-     /// instance for the purpose of clearing cached information. This function 
-     /// also returns 'true' if a cycle was formed and some SCCs merged away as 
-     /// a convenience. 
-     /// 
-     /// After this operation, both SourceN's SCC and TargetN's SCC may move 
-     /// position within this RefSCC's postorder list. Any SCCs merged are 
-     /// merged into the TargetN's SCC in order to preserve reachability analyses 
-     /// which took place on that SCC. 
-     bool switchInternalEdgeToCall( 
-         Node &SourceN, Node &TargetN, 
-         function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {}); 
-   
-     /// Make an existing internal call edge between separate SCCs into a ref 
-     /// edge. 
-     /// 
-     /// If SourceN and TargetN in separate SCCs within this RefSCC, changing 
-     /// the call edge between them to a ref edge is a trivial operation that 
-     /// does not require any structural changes to the call graph. 
-     void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN); 
-   
-     /// Make an existing internal call edge within a single SCC into a ref 
-     /// edge. 
-     /// 
-     /// Since SourceN and TargetN are part of a single SCC, this SCC may be 
-     /// split up due to breaking a cycle in the call edges that formed it. If 
-     /// that happens, then this routine will insert new SCCs into the postorder 
-     /// list *before* the SCC of TargetN (previously the SCC of both). This 
-     /// preserves postorder as the TargetN can reach all of the other nodes by 
-     /// definition of previously being in a single SCC formed by the cycle from 
-     /// SourceN to TargetN. 
-     /// 
-     /// The newly added SCCs are added *immediately* and contiguously 
-     /// prior to the TargetN SCC and return the range covering the new SCCs in 
-     /// the RefSCC's postorder sequence. You can directly iterate the returned 
-     /// range to observe all of the new SCCs in postorder. 
-     /// 
-     /// Note that if SourceN and TargetN are in separate SCCs, the simpler 
-     /// routine `switchTrivialInternalEdgeToRef` should be used instead. 
-     iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN, 
-                                                      Node &TargetN); 
-   
-     /// Make an existing outgoing ref edge into a call edge. 
-     /// 
-     /// Note that this is trivial as there are no cyclic impacts and there 
-     /// remains a reference edge. 
-     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN); 
-   
-     /// Make an existing outgoing call edge into a ref edge. 
-     /// 
-     /// This is trivial as there are no cyclic impacts and there remains 
-     /// a reference edge. 
-     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN); 
-   
-     /// Insert a ref edge from one node in this RefSCC to another in this 
-     /// RefSCC. 
-     /// 
-     /// This is always a trivial operation as it doesn't change any part of the 
-     /// graph structure besides connecting the two nodes. 
-     /// 
-     /// Note that we don't support directly inserting internal *call* edges 
-     /// because that could change the graph structure and requires returning 
-     /// information about what became invalid. As a consequence, the pattern 
-     /// should be to first insert the necessary ref edge, and then to switch it 
-     /// to a call edge if needed and handle any invalidation that results. See 
-     /// the \c switchInternalEdgeToCall routine for details. 
-     void insertInternalRefEdge(Node &SourceN, Node &TargetN); 
-   
-     /// Insert an edge whose parent is in this RefSCC and child is in some 
-     /// child RefSCC. 
-     /// 
-     /// There must be an existing path from the \p SourceN to the \p TargetN. 
-     /// This operation is inexpensive and does not change the set of SCCs and 
-     /// RefSCCs in the graph. 
-     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK); 
-   
-     /// Insert an edge whose source is in a descendant RefSCC and target is in 
-     /// this RefSCC. 
-     /// 
-     /// There must be an existing path from the target to the source in this 
-     /// case. 
-     /// 
-     /// NB! This is has the potential to be a very expensive function. It 
-     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge 
-     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which 
-     /// participate in the cycle can in the worst case require traversing every 
-     /// RefSCC in the graph. Every attempt is made to avoid that, but passes 
-     /// must still exercise caution calling this routine repeatedly. 
-     /// 
-     /// Also note that this can only insert ref edges. In order to insert 
-     /// a call edge, first insert a ref edge and then switch it to a call edge. 
-     /// These are intentionally kept as separate interfaces because each step 
-     /// of the operation invalidates a different set of data structures. 
-     /// 
-     /// This returns all the RefSCCs which were merged into the this RefSCC 
-     /// (the target's). This allows callers to invalidate any cached 
-     /// information. 
-     /// 
-     /// FIXME: We could possibly optimize this quite a bit for cases where the 
-     /// caller and callee are very nearby in the graph. See comments in the 
-     /// implementation for details, but that use case might impact users. 
-     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN, 
-                                                    Node &TargetN); 
-   
-     /// Remove an edge whose source is in this RefSCC and target is *not*. 
-     /// 
-     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating 
-     /// from this SCC have been fully explored by any in-flight DFS graph 
-     /// formation, so this is always safe to call once you have the source 
-     /// RefSCC. 
-     /// 
-     /// This operation does not change the cyclic structure of the graph and so 
-     /// is very inexpensive. It may change the connectivity graph of the SCCs 
-     /// though, so be careful calling this while iterating over them. 
-     void removeOutgoingEdge(Node &SourceN, Node &TargetN); 
-   
-     /// Remove a list of ref edges which are entirely within this RefSCC. 
-     /// 
-     /// Both the \a SourceN and all of the \a TargetNs must be within this 
-     /// RefSCC. Removing these edges may break cycles that form this RefSCC and 
-     /// thus this operation may change the RefSCC graph significantly. In 
-     /// particular, this operation will re-form new RefSCCs based on the 
-     /// remaining connectivity of the graph. The following invariants are 
-     /// guaranteed to hold after calling this method: 
-     /// 
-     /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact 
-     ///    and in the graph. No new RefSCCs are built. 
-     /// 2) Otherwise, this RefSCC will be dead after this call and no longer in 
-     ///    the graph or the postorder traversal of the call graph. Any iterator 
-     ///    pointing at this RefSCC will become invalid. 
-     /// 3) All newly formed RefSCCs will be returned and the order of the 
-     ///    RefSCCs returned will be a valid postorder traversal of the new 
-     ///    RefSCCs. 
-     /// 4) No RefSCC other than this RefSCC has its member set changed (this is 
-     ///    inherent in the definition of removing such an edge). 
-     /// 
-     /// These invariants are very important to ensure that we can build 
-     /// optimization pipelines on top of the CGSCC pass manager which 
-     /// intelligently update the RefSCC graph without invalidating other parts 
-     /// of the RefSCC graph. 
-     /// 
-     /// Note that we provide no routine to remove a *call* edge. Instead, you 
-     /// must first switch it to a ref edge using \c switchInternalEdgeToRef. 
-     /// This split API is intentional as each of these two steps can invalidate 
-     /// a different aspect of the graph structure and needs to have the 
-     /// invalidation handled independently. 
-     /// 
-     /// The runtime complexity of this method is, in the worst case, O(V+E) 
-     /// where V is the number of nodes in this RefSCC and E is the number of 
-     /// edges leaving the nodes in this RefSCC. Note that E includes both edges 
-     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some 
-     /// effort has been made to minimize the overhead of common cases such as 
-     /// self-edges and edge removals which result in a spanning tree with no 
-     /// more cycles. 
-     [[nodiscard]] SmallVector<RefSCC *, 1> 
-     removeInternalRefEdge(Node &SourceN, ArrayRef<Node *> TargetNs); 
-   
-     /// A convenience wrapper around the above to handle trivial cases of 
-     /// inserting a new call edge. 
-     /// 
-     /// This is trivial whenever the target is in the same SCC as the source or 
-     /// the edge is an outgoing edge to some descendant SCC. In these cases 
-     /// there is no change to the cyclic structure of SCCs or RefSCCs. 
-     /// 
-     /// To further make calling this convenient, it also handles inserting 
-     /// already existing edges. 
-     void insertTrivialCallEdge(Node &SourceN, Node &TargetN); 
-   
-     /// A convenience wrapper around the above to handle trivial cases of 
-     /// inserting a new ref edge. 
-     /// 
-     /// This is trivial whenever the target is in the same RefSCC as the source 
-     /// or the edge is an outgoing edge to some descendant RefSCC. In these 
-     /// cases there is no change to the cyclic structure of the RefSCCs. 
-     /// 
-     /// To further make calling this convenient, it also handles inserting 
-     /// already existing edges. 
-     void insertTrivialRefEdge(Node &SourceN, Node &TargetN); 
-   
-     /// Directly replace a node's function with a new function. 
-     /// 
-     /// This should be used when moving the body and users of a function to 
-     /// a new formal function object but not otherwise changing the call graph 
-     /// structure in any way. 
-     /// 
-     /// It requires that the old function in the provided node have zero uses 
-     /// and the new function must have calls and references to it establishing 
-     /// an equivalent graph. 
-     void replaceNodeFunction(Node &N, Function &NewF); 
-   
-     ///@} 
-   }; 
-   
-   /// A post-order depth-first RefSCC iterator over the call graph. 
-   /// 
-   /// This iterator walks the cached post-order sequence of RefSCCs. However, 
-   /// it trades stability for flexibility. It is restricted to a forward 
-   /// iterator but will survive mutations which insert new RefSCCs and continue 
-   /// to point to the same RefSCC even if it moves in the post-order sequence. 
-   class postorder_ref_scc_iterator 
-       : public iterator_facade_base<postorder_ref_scc_iterator, 
-                                     std::forward_iterator_tag, RefSCC> { 
-     friend class LazyCallGraph; 
-     friend class LazyCallGraph::Node; 
-   
-     /// Nonce type to select the constructor for the end iterator. 
-     struct IsAtEndT {}; 
-   
-     LazyCallGraph *G; 
-     RefSCC *RC = nullptr; 
-   
-     /// Build the begin iterator for a node. 
-     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) { 
-       incrementUntilNonEmptyRefSCC(); 
-     } 
-   
-     /// Build the end iterator for a node. This is selected purely by overload. 
-     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {} 
-   
-     /// Get the post-order RefSCC at the given index of the postorder walk, 
-     /// populating it if necessary. 
-     static RefSCC *getRC(LazyCallGraph &G, int Index) { 
-       if (Index == (int)G.PostOrderRefSCCs.size()) 
-         // We're at the end. 
-         return nullptr; 
-   
-       return G.PostOrderRefSCCs[Index]; 
-     } 
-   
-     // Keep incrementing until RC is non-empty (or null). 
-     void incrementUntilNonEmptyRefSCC() { 
-       while (RC && RC->size() == 0) 
-         increment(); 
-     } 
-   
-     void increment() { 
-       assert(RC && "Cannot increment the end iterator!"); 
-       RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1); 
-     } 
-   
-   public: 
-     bool operator==(const postorder_ref_scc_iterator &Arg) const { 
-       return G == Arg.G && RC == Arg.RC; 
-     } 
-   
-     reference operator*() const { return *RC; } 
-   
-     using iterator_facade_base::operator++; 
-     postorder_ref_scc_iterator &operator++() { 
-       increment(); 
-       incrementUntilNonEmptyRefSCC(); 
-       return *this; 
-     } 
-   }; 
-   
-   /// Construct a graph for the given module. 
-   /// 
-   /// This sets up the graph and computes all of the entry points of the graph. 
-   /// No function definitions are scanned until their nodes in the graph are 
-   /// requested during traversal. 
-   LazyCallGraph(Module &M, 
-                 function_ref<TargetLibraryInfo &(Function &)> GetTLI); 
-   
-   LazyCallGraph(LazyCallGraph &&G); 
-   LazyCallGraph &operator=(LazyCallGraph &&RHS); 
-   
-   bool invalidate(Module &, const PreservedAnalyses &PA, 
-                   ModuleAnalysisManager::Invalidator &); 
-   
-   EdgeSequence::iterator begin() { return EntryEdges.begin(); } 
-   EdgeSequence::iterator end() { return EntryEdges.end(); } 
-   
-   void buildRefSCCs(); 
-   
-   postorder_ref_scc_iterator postorder_ref_scc_begin() { 
-     if (!EntryEdges.empty()) 
-       assert(!PostOrderRefSCCs.empty() && 
-              "Must form RefSCCs before iterating them!"); 
-     return postorder_ref_scc_iterator(*this); 
-   } 
-   postorder_ref_scc_iterator postorder_ref_scc_end() { 
-     if (!EntryEdges.empty()) 
-       assert(!PostOrderRefSCCs.empty() && 
-              "Must form RefSCCs before iterating them!"); 
-     return postorder_ref_scc_iterator(*this, 
-                                       postorder_ref_scc_iterator::IsAtEndT()); 
-   } 
-   
-   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() { 
-     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end()); 
-   } 
-   
-   /// Lookup a function in the graph which has already been scanned and added. 
-   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); } 
-   
-   /// Lookup a function's SCC in the graph. 
-   /// 
-   /// \returns null if the function hasn't been assigned an SCC via the RefSCC 
-   /// iterator walk. 
-   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); } 
-   
-   /// Lookup a function's RefSCC in the graph. 
-   /// 
-   /// \returns null if the function hasn't been assigned a RefSCC via the 
-   /// RefSCC iterator walk. 
-   RefSCC *lookupRefSCC(Node &N) const { 
-     if (SCC *C = lookupSCC(N)) 
-       return &C->getOuterRefSCC(); 
-   
-     return nullptr; 
-   } 
-   
-   /// Get a graph node for a given function, scanning it to populate the graph 
-   /// data as necessary. 
-   Node &get(Function &F) { 
-     Node *&N = NodeMap[&F]; 
-     if (N) 
-       return *N; 
-   
-     return insertInto(F, N); 
-   } 
-   
-   /// Get the sequence of known and defined library functions. 
-   /// 
-   /// These functions, because they are known to LLVM, can have calls 
-   /// introduced out of thin air from arbitrary IR. 
-   ArrayRef<Function *> getLibFunctions() const { 
-     return LibFunctions.getArrayRef(); 
-   } 
-   
-   /// Test whether a function is a known and defined library function tracked by 
-   /// the call graph. 
-   /// 
-   /// Because these functions are known to LLVM they are specially modeled in 
-   /// the call graph and even when all IR-level references have been removed 
-   /// remain active and reachable. 
-   bool isLibFunction(Function &F) const { return LibFunctions.count(&F); } 
-   
-   ///@{ 
-   /// \name Pre-SCC Mutation API 
-   /// 
-   /// These methods are only valid to call prior to forming any SCCs for this 
-   /// call graph. They can be used to update the core node-graph during 
-   /// a node-based inorder traversal that precedes any SCC-based traversal. 
-   /// 
-   /// Once you begin manipulating a call graph's SCCs, most mutation of the 
-   /// graph must be performed via a RefSCC method. There are some exceptions 
-   /// below. 
-   
-   /// Update the call graph after inserting a new edge. 
-   void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK); 
-   
-   /// Update the call graph after inserting a new edge. 
-   void insertEdge(Function &Source, Function &Target, Edge::Kind EK) { 
-     return insertEdge(get(Source), get(Target), EK); 
-   } 
-   
-   /// Update the call graph after deleting an edge. 
-   void removeEdge(Node &SourceN, Node &TargetN); 
-   
-   /// Update the call graph after deleting an edge. 
-   void removeEdge(Function &Source, Function &Target) { 
-     return removeEdge(get(Source), get(Target)); 
-   } 
-   
-   ///@} 
-   
-   ///@{ 
-   /// \name General Mutation API 
-   /// 
-   /// There are a very limited set of mutations allowed on the graph as a whole 
-   /// once SCCs have started to be formed. These routines have strict contracts 
-   /// but may be called at any point. 
-   
-   /// Remove a dead function from the call graph (typically to delete it). 
-   /// 
-   /// Note that the function must have an empty use list, and the call graph 
-   /// must be up-to-date prior to calling this. That means it is by itself in 
-   /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural 
-   /// changes result from calling this routine other than potentially removing 
-   /// entry points into the call graph. 
-   /// 
-   /// If SCC formation has begun, this function must not be part of the current 
-   /// DFS in order to call this safely. Typically, the function will have been 
-   /// fully visited by the DFS prior to calling this routine. 
-   void removeDeadFunction(Function &F); 
-   
-   /// Add a new function split/outlined from an existing function. 
-   /// 
-   /// The new function may only reference other functions that the original 
-   /// function did. 
-   /// 
-   /// The original function must reference (either directly or indirectly) the 
-   /// new function. 
-   /// 
-   /// The new function may also reference the original function. 
-   /// It may end up in a parent SCC in the case that the original function's 
-   /// edge to the new function is a ref edge, and the edge back is a call edge. 
-   void addSplitFunction(Function &OriginalFunction, Function &NewFunction); 
-   
-   /// Add new ref-recursive functions split/outlined from an existing function. 
-   /// 
-   /// The new functions may only reference other functions that the original 
-   /// function did. The new functions may reference (not call) the original 
-   /// function. 
-   /// 
-   /// The original function must reference (not call) all new functions. 
-   /// All new functions must reference (not call) each other. 
-   void addSplitRefRecursiveFunctions(Function &OriginalFunction, 
-                                      ArrayRef<Function *> NewFunctions); 
-   
-   ///@} 
-   
-   ///@{ 
-   /// \name Static helpers for code doing updates to the call graph. 
-   /// 
-   /// These helpers are used to implement parts of the call graph but are also 
-   /// useful to code doing updates or otherwise wanting to walk the IR in the 
-   /// same patterns as when we build the call graph. 
-   
-   /// Recursively visits the defined functions whose address is reachable from 
-   /// every constant in the \p Worklist. 
-   /// 
-   /// Doesn't recurse through any constants already in the \p Visited set, and 
-   /// updates that set with every constant visited. 
-   /// 
-   /// For each defined function, calls \p Callback with that function. 
-   static void visitReferences(SmallVectorImpl<Constant *> &Worklist, 
-                               SmallPtrSetImpl<Constant *> &Visited, 
-                               function_ref<void(Function &)> Callback); 
-   
-   ///@} 
-   
- private: 
-   using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator; 
-   using node_stack_range = iterator_range<node_stack_iterator>; 
-   
-   /// Allocator that holds all the call graph nodes. 
-   SpecificBumpPtrAllocator<Node> BPA; 
-   
-   /// Maps function->node for fast lookup. 
-   DenseMap<const Function *, Node *> NodeMap; 
-   
-   /// The entry edges into the graph. 
-   /// 
-   /// These edges are from "external" sources. Put another way, they 
-   /// escape at the module scope. 
-   EdgeSequence EntryEdges; 
-   
-   /// Allocator that holds all the call graph SCCs. 
-   SpecificBumpPtrAllocator<SCC> SCCBPA; 
-   
-   /// Maps Function -> SCC for fast lookup. 
-   DenseMap<Node *, SCC *> SCCMap; 
-   
-   /// Allocator that holds all the call graph RefSCCs. 
-   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA; 
-   
-   /// The post-order sequence of RefSCCs. 
-   /// 
-   /// This list is lazily formed the first time we walk the graph. 
-   SmallVector<RefSCC *, 16> PostOrderRefSCCs; 
-   
-   /// A map from RefSCC to the index for it in the postorder sequence of 
-   /// RefSCCs. 
-   DenseMap<RefSCC *, int> RefSCCIndices; 
-   
-   /// Defined functions that are also known library functions which the 
-   /// optimizer can reason about and therefore might introduce calls to out of 
-   /// thin air. 
-   SmallSetVector<Function *, 4> LibFunctions; 
-   
-   /// Helper to insert a new function, with an already looked-up entry in 
-   /// the NodeMap. 
-   Node &insertInto(Function &F, Node *&MappedN); 
-   
-   /// Helper to initialize a new node created outside of creating SCCs and add 
-   /// it to the NodeMap if necessary. For example, useful when a function is 
-   /// split. 
-   Node &initNode(Function &F); 
-   
-   /// Helper to update pointers back to the graph object during moves. 
-   void updateGraphPtrs(); 
-   
-   /// Allocates an SCC and constructs it using the graph allocator. 
-   /// 
-   /// The arguments are forwarded to the constructor. 
-   template <typename... Ts> SCC *createSCC(Ts &&...Args) { 
-     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...); 
-   } 
-   
-   /// Allocates a RefSCC and constructs it using the graph allocator. 
-   /// 
-   /// The arguments are forwarded to the constructor. 
-   template <typename... Ts> RefSCC *createRefSCC(Ts &&...Args) { 
-     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...); 
-   } 
-   
-   /// Common logic for building SCCs from a sequence of roots. 
-   /// 
-   /// This is a very generic implementation of the depth-first walk and SCC 
-   /// formation algorithm. It uses a generic sequence of roots and generic 
-   /// callbacks for each step. This is designed to be used to implement both 
-   /// the RefSCC formation and SCC formation with shared logic. 
-   /// 
-   /// Currently this is a relatively naive implementation of Tarjan's DFS 
-   /// algorithm to form the SCCs. 
-   /// 
-   /// FIXME: We should consider newer variants such as Nuutila. 
-   template <typename RootsT, typename GetBeginT, typename GetEndT, 
-             typename GetNodeT, typename FormSCCCallbackT> 
-   static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, 
-                                GetEndT &&GetEnd, GetNodeT &&GetNode, 
-                                FormSCCCallbackT &&FormSCC); 
-   
-   /// Build the SCCs for a RefSCC out of a list of nodes. 
-   void buildSCCs(RefSCC &RC, node_stack_range Nodes); 
-   
-   /// Get the index of a RefSCC within the postorder traversal. 
-   /// 
-   /// Requires that this RefSCC is a valid one in the (perhaps partial) 
-   /// postorder traversed part of the graph. 
-   int getRefSCCIndex(RefSCC &RC) { 
-     auto IndexIt = RefSCCIndices.find(&RC); 
-     assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!"); 
-     assert(PostOrderRefSCCs[IndexIt->second] == &RC && 
-            "Index does not point back at RC!"); 
-     return IndexIt->second; 
-   } 
- }; 
-   
- inline LazyCallGraph::Edge::Edge() = default; 
- inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {} 
-   
- inline LazyCallGraph::Edge::operator bool() const { 
-   return Value.getPointer() && !Value.getPointer()->isDead(); 
- } 
-   
- inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const { 
-   assert(*this && "Queried a null edge!"); 
-   return Value.getInt(); 
- } 
-   
- inline bool LazyCallGraph::Edge::isCall() const { 
-   assert(*this && "Queried a null edge!"); 
-   return getKind() == Call; 
- } 
-   
- inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const { 
-   assert(*this && "Queried a null edge!"); 
-   return *Value.getPointer(); 
- } 
-   
- inline Function &LazyCallGraph::Edge::getFunction() const { 
-   assert(*this && "Queried a null edge!"); 
-   return getNode().getFunction(); 
- } 
-   
- // Provide GraphTraits specializations for call graphs. 
- template <> struct GraphTraits<LazyCallGraph::Node *> { 
-   using NodeRef = LazyCallGraph::Node *; 
-   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator; 
-   
-   static NodeRef getEntryNode(NodeRef N) { return N; } 
-   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); } 
-   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); } 
- }; 
- template <> struct GraphTraits<LazyCallGraph *> { 
-   using NodeRef = LazyCallGraph::Node *; 
-   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator; 
-   
-   static NodeRef getEntryNode(NodeRef N) { return N; } 
-   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); } 
-   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); } 
- }; 
-   
- /// An analysis pass which computes the call graph for a module. 
- class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> { 
-   friend AnalysisInfoMixin<LazyCallGraphAnalysis>; 
-   
-   static AnalysisKey Key; 
-   
- public: 
-   /// Inform generic clients of the result type. 
-   using Result = LazyCallGraph; 
-   
-   /// Compute the \c LazyCallGraph for the module \c M. 
-   /// 
-   /// This just builds the set of entry points to the call graph. The rest is 
-   /// built lazily as it is walked. 
-   LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) { 
-     FunctionAnalysisManager &FAM = 
-         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 
-     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 
-       return FAM.getResult<TargetLibraryAnalysis>(F); 
-     }; 
-     return LazyCallGraph(M, GetTLI); 
-   } 
- }; 
-   
- /// A pass which prints the call graph to a \c raw_ostream. 
- /// 
- /// This is primarily useful for testing the analysis. 
- class LazyCallGraphPrinterPass 
-     : public PassInfoMixin<LazyCallGraphPrinterPass> { 
-   raw_ostream &OS; 
-   
- public: 
-   explicit LazyCallGraphPrinterPass(raw_ostream &OS); 
-   
-   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); 
- }; 
-   
- /// A pass which prints the call graph as a DOT file to a \c raw_ostream. 
- /// 
- /// This is primarily useful for visualization purposes. 
- class LazyCallGraphDOTPrinterPass 
-     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> { 
-   raw_ostream &OS; 
-   
- public: 
-   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS); 
-   
-   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H 
-