//===- IRSimilarityIdentifier.h - Find similarity in a module --------------==//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// \file
 
// Interface file for the IRSimilarityIdentifier for identifying similarities in
 
// IR including the IRInstructionMapper, which maps an Instruction to unsigned
 
// integers.
 
//
 
// Two sequences of instructions are called "similar" if they perform the same
 
// series of operations for all inputs.
 
//
 
// \code
 
// %1 = add i32 %a, 10
 
// %2 = add i32 %a, %1
 
// %3 = icmp slt icmp %1, %2
 
// \endcode
 
//
 
// and
 
//
 
// \code
 
// %1 = add i32 11, %a
 
// %2 = sub i32 %a, %1
 
// %3 = icmp sgt icmp %2, %1
 
// \endcode
 
//
 
// ultimately have the same result, even if the inputs, and structure are
 
// slightly different.
 
//
 
// For instructions, we do not worry about operands that do not have fixed
 
// semantic meaning to the program.  We consider the opcode that the instruction
 
// has, the types, parameters, and extra information such as the function name,
 
// or comparison predicate.  These are used to create a hash to map instructions
 
// to integers to be used in similarity matching in sequences of instructions
 
//
 
// Terminology:
 
// An IRSimilarityCandidate is a region of IRInstructionData (wrapped
 
// Instructions), usually used to denote a region of similarity has been found.
 
//
 
// A SimilarityGroup is a set of IRSimilarityCandidates that are structurally
 
// similar to one another.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
 
#define LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
 
 
 
#include "llvm/IR/InstVisitor.h"
 
#include "llvm/IR/Instructions.h"
 
#include "llvm/IR/PassManager.h"
 
#include "llvm/Pass.h"
 
#include "llvm/Support/Allocator.h"
 
#include <optional>
 
 
 
namespace llvm {
 
class Module;
 
 
 
namespace IRSimilarity {
 
 
 
struct IRInstructionDataList;
 
 
 
/// This represents what is and is not supported when finding similarity in
 
/// Instructions.
 
///
 
/// Legal Instructions are considered when looking at similarity between
 
/// Instructions.
 
///
 
/// Illegal Instructions cannot be considered when looking for similarity
 
/// between Instructions. They act as boundaries between similarity regions.
 
///
 
/// Invisible Instructions are skipped over during analysis.
 
// TODO: Shared with MachineOutliner
 
enum InstrType { Legal, Illegal, Invisible };
 
 
 
/// This provides the utilities for hashing an Instruction to an unsigned
 
/// integer. Two IRInstructionDatas produce the same hash value when their
 
/// underlying Instructions perform the same operation (even if they don't have
 
/// the same input operands.)
 
/// As a more concrete example, consider the following:
 
///
 
/// \code
 
/// %add1 = add i32 %a, %b
 
/// %add2 = add i32 %c, %d
 
/// %add3 = add i64 %e, %f
 
/// \endcode
 
///
 
// Then the IRInstructionData wrappers for these Instructions may be hashed like
 
/// so:
 
///
 
/// \code
 
/// ; These two adds have the same types and operand types, so they hash to the
 
/// ; same number.
 
/// %add1 = add i32 %a, %b ; Hash: 1
 
/// %add2 = add i32 %c, %d ; Hash: 1
 
/// ; This add produces an i64. This differentiates it from %add1 and %add2. So,
 
/// ; it hashes to a different number.
 
/// %add3 = add i64 %e, %f; Hash: 2
 
/// \endcode
 
///
 
///
 
/// This hashing scheme will be used to represent the program as a very long
 
/// string. This string can then be placed in a data structure which can be used
 
/// for similarity queries.
 
///
 
/// TODO: Handle types of Instructions which can be equal even with different
 
/// operands. (E.g. comparisons with swapped predicates.)
 
/// TODO: Handle CallInsts, which are only checked for function type
 
/// by \ref isSameOperationAs.
 
/// TODO: Handle GetElementPtrInsts, as some of the operands have to be the
 
/// exact same, and some do not.
 
struct IRInstructionData
 
    : ilist_node<IRInstructionData, ilist_sentinel_tracking<true>> {
 
 
 
  /// The source Instruction that is being wrapped.
 
  Instruction *Inst = nullptr;
 
  /// The values of the operands in the Instruction.
 
  SmallVector<Value *, 4> OperVals;
 
  /// The legality of the wrapped instruction. This is informed by InstrType,
 
  /// and is used when checking when two instructions are considered similar.
 
  /// If either instruction is not legal, the instructions are automatically not
 
  /// considered similar.
 
  bool Legal = false;
 
 
 
  /// This is only relevant if we are wrapping a CmpInst where we needed to
 
  /// change the predicate of a compare instruction from a greater than form
 
  /// to a less than form.  It is None otherwise.
 
  std::optional<CmpInst::Predicate> RevisedPredicate;
 
 
 
  /// This is only relevant if we are wrapping a CallInst. If we are requiring
 
  /// that the function calls have matching names as well as types, and the
 
  /// call is not an indirect call, this will hold the name of the function.  If
 
  /// it is an indirect string, it will be the empty string.  However, if this
 
  /// requirement is not in place it will be the empty string regardless of the
 
  /// function call type.  The value held here is used to create the hash of the
 
  /// instruction, and check to make sure two instructions are close to one
 
  /// another.
 
  std::optional<std::string> CalleeName;
 
 
 
  /// This structure holds the distances of how far "ahead of" or "behind" the
 
  /// target blocks of a branch, or the incoming blocks of a phi nodes are.
 
  /// If the value is negative, it means that the block was registered before
 
  /// the block of this instruction in terms of blocks in the function.
 
  /// Code Example:
 
  /// \code
 
  /// block_1:
 
  ///   br i1 %0, label %block_2, label %block_3
 
  /// block_2:
 
  ///   br i1 %1, label %block_1, label %block_2
 
  /// block_3:
 
  ///   br i1 %2, label %block_2, label %block_1
 
  /// ; Replacing the labels with relative values, this becomes:
 
  /// block_1:
 
  ///   br i1 %0, distance 1, distance 2
 
  /// block_2:
 
  ///   br i1 %1, distance -1, distance 0
 
  /// block_3:
 
  ///   br i1 %2, distance -1, distance -2
 
  /// \endcode
 
  /// Taking block_2 as our example, block_1 is "behind" block_2, and block_2 is
 
  /// "ahead" of block_2.
 
  SmallVector<int, 4> RelativeBlockLocations;
 
 
 
  /// Gather the information that is difficult to gather for an Instruction, or
 
  /// is changed. i.e. the operands of an Instruction and the Types of those
 
  /// operands. This extra information allows for similarity matching to make
 
  /// assertions that allow for more flexibility when checking for whether an
 
  /// Instruction performs the same operation.
 
  IRInstructionData(Instruction &I, bool Legality, IRInstructionDataList &IDL);
 
  IRInstructionData(IRInstructionDataList &IDL);
 
 
 
  /// Fills data stuctures for IRInstructionData when it is constructed from a
 
  // reference or a pointer.
 
  void initializeInstruction();
 
 
 
  /// Get the predicate that the compare instruction is using for hashing the
 
  /// instruction. the IRInstructionData must be wrapping a CmpInst.
 
  CmpInst::Predicate getPredicate() const;
 
 
 
  /// Get the callee name that the call instruction is using for hashing the
 
  /// instruction. The IRInstructionData must be wrapping a CallInst.
 
  StringRef getCalleeName() const;
 
 
 
  /// A function that swaps the predicates to their less than form if they are
 
  /// in a greater than form. Otherwise, the predicate is unchanged.
 
  ///
 
  /// \param CI - The comparison operation to find a consistent preidcate for.
 
  /// \return the consistent comparison predicate. 
 
  static CmpInst::Predicate predicateForConsistency(CmpInst *CI);
 
 
 
  /// For an IRInstructionData containing a branch, finds the
 
  /// relative distances from the source basic block to the target by taking
 
  /// the difference of the number assigned to the current basic block and the
 
  /// target basic block of the branch.
 
  ///
 
  /// \param BasicBlockToInteger - The mapping of basic blocks to their location
 
  /// in the module.
 
  void
 
  setBranchSuccessors(DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger);
 
 
 
  /// For an IRInstructionData containing a CallInst, set the function name
 
  /// appropriately.  This will be an empty string if it is an indirect call,
 
  /// or we are not matching by name of the called function.  It will be the
 
  /// name of the function if \p MatchByName is true and it is not an indirect
 
  /// call.  We may decide not to match by name in order to expand the
 
  /// size of the regions we can match.  If a function name has the same type
 
  /// signature, but the different name, the region of code is still almost the
 
  /// same.  Since function names can be treated as constants, the name itself
 
  /// could be extrapolated away.  However, matching by name provides a
 
  /// specificity and more "identical" code than not matching by name.
 
  ///
 
  /// \param MatchByName - A flag to mark whether we are using the called
 
  /// function name as a differentiating parameter.
 
  void setCalleeName(bool MatchByName = true);
 
 
 
  /// For an IRInstructionData containing a PHINode, finds the
 
  /// relative distances from the incoming basic block to the current block by
 
  /// taking the difference of the number assigned to the current basic block
 
  /// and the incoming basic block of the branch.
 
  ///
 
  /// \param BasicBlockToInteger - The mapping of basic blocks to their location
 
  /// in the module.
 
  void
 
  setPHIPredecessors(DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger);
 
 
 
  /// Hashes \p Value based on its opcode, types, and operand types.
 
  /// Two IRInstructionData instances produce the same hash when they perform
 
  /// the same operation.
 
  ///
 
  /// As a simple example, consider the following instructions.
 
  ///
 
  /// \code
 
  /// %add1 = add i32 %x1, %y1
 
  /// %add2 = add i32 %x2, %y2
 
  ///
 
  /// %sub = sub i32 %x1, %y1
 
  ///
 
  /// %add_i64 = add i64 %x2, %y2
 
  /// \endcode
 
  ///
 
  /// Because the first two adds operate the same types, and are performing the
 
  /// same action, they will be hashed to the same value.
 
  ///
 
  /// However, the subtraction instruction is not the same as an addition, and
 
  /// will be hashed to a different value.
 
  ///
 
  /// Finally, the last add has a different type compared to the first two add
 
  /// instructions, so it will also be hashed to a different value that any of
 
  /// the previous instructions.
 
  ///
 
  /// \param [in] ID - The IRInstructionData instance to be hashed.
 
  /// \returns A hash_value of the IRInstructionData.
 
  friend hash_code hash_value(const IRInstructionData &ID) {
 
    SmallVector<Type *, 4> OperTypes;
 
    for (Value *V : ID.OperVals)
 
      OperTypes.push_back(V->getType());
 
 
 
    if (isa<CmpInst>(ID.Inst))
 
      return llvm::hash_combine(
 
          llvm::hash_value(ID.Inst->getOpcode()),
 
          llvm::hash_value(ID.Inst->getType()),
 
          llvm::hash_value(ID.getPredicate()),
 
          llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
 
 
 
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(ID.Inst)) {
 
      // To hash intrinsics, we use the opcode, and types like the other
 
      // instructions, but also, the Intrinsic ID, and the Name of the
 
      // intrinsic.
 
      Intrinsic::ID IntrinsicID = II->getIntrinsicID();
 
      return llvm::hash_combine(
 
          llvm::hash_value(ID.Inst->getOpcode()),
 
          llvm::hash_value(ID.Inst->getType()), llvm::hash_value(IntrinsicID),
 
          llvm::hash_value(*ID.CalleeName),
 
          llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
 
    }
 
 
 
    if (isa<CallInst>(ID.Inst)) {
 
      std::string FunctionName = *ID.CalleeName;
 
      return llvm::hash_combine(
 
          llvm::hash_value(ID.Inst->getOpcode()),
 
          llvm::hash_value(ID.Inst->getType()),
 
          llvm::hash_value(ID.Inst->getType()), llvm::hash_value(FunctionName),
 
          llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
 
    }
 
 
 
    return llvm::hash_combine(
 
        llvm::hash_value(ID.Inst->getOpcode()),
 
        llvm::hash_value(ID.Inst->getType()),
 
        llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
 
  }
 
 
 
  IRInstructionDataList *IDL = nullptr;
 
};
 
 
 
struct IRInstructionDataList
 
    : simple_ilist<IRInstructionData, ilist_sentinel_tracking<true>> {};
 
 
 
/// Compare one IRInstructionData class to another IRInstructionData class for
 
/// whether they are performing a the same operation, and can mapped to the
 
/// same value. For regular instructions if the hash value is the same, then
 
/// they will also be close.
 
///
 
/// \param A - The first IRInstructionData class to compare
 
/// \param B - The second IRInstructionData class to compare
 
/// \returns true if \p A and \p B are similar enough to be mapped to the same
 
/// value.
 
bool isClose(const IRInstructionData &A, const IRInstructionData &B);
 
 
 
struct IRInstructionDataTraits : DenseMapInfo<IRInstructionData *> {
 
  static inline IRInstructionData *getEmptyKey() { return nullptr; }
 
  static inline IRInstructionData *getTombstoneKey() {
 
    return reinterpret_cast<IRInstructionData *>(-1);
 
  }
 
 
 
  static unsigned getHashValue(const IRInstructionData *E) {
 
    using llvm::hash_value;
 
    assert(E && "IRInstructionData is a nullptr?");
 
    return hash_value(*E);
 
  }
 
 
 
  static bool isEqual(const IRInstructionData *LHS,
 
                      const IRInstructionData *RHS) {
 
    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
 
        LHS == getEmptyKey() || LHS == getTombstoneKey())
 
      return LHS == RHS;
 
 
 
    assert(LHS && RHS && "nullptr should have been caught by getEmptyKey?");
 
    return isClose(*LHS, *RHS);
 
  }
 
};
 
 
 
/// Helper struct for converting the Instructions in a Module into a vector of
 
/// unsigned integers. This vector of unsigned integers can be thought of as a
 
/// "numeric string". This numeric string can then be queried by, for example,
 
/// data structures that find repeated substrings.
 
///
 
/// This hashing is done per BasicBlock in the module. To hash Instructions
 
/// based off of their operations, each Instruction is wrapped in an
 
/// IRInstructionData struct. The unsigned integer for an IRInstructionData
 
/// depends on:
 
/// - The hash provided by the IRInstructionData.
 
/// - Which member of InstrType the IRInstructionData is classified as.
 
// See InstrType for more details on the possible classifications, and how they
 
// manifest in the numeric string.
 
///
 
/// The numeric string for an individual BasicBlock is terminated by an unique
 
/// unsigned integer. This prevents data structures which rely on repetition
 
/// from matching across BasicBlocks. (For example, the SuffixTree.)
 
/// As a concrete example, if we have the following two BasicBlocks:
 
/// \code
 
/// bb0:
 
/// %add1 = add i32 %a, %b
 
/// %add2 = add i32 %c, %d
 
/// %add3 = add i64 %e, %f
 
/// bb1:
 
/// %sub = sub i32 %c, %d
 
/// \endcode
 
/// We may hash the Instructions like this (via IRInstructionData):
 
/// \code
 
/// bb0:
 
/// %add1 = add i32 %a, %b ; Hash: 1
 
/// %add2 = add i32 %c, %d; Hash: 1
 
/// %add3 = add i64 %e, %f; Hash: 2
 
/// bb1:
 
/// %sub = sub i32 %c, %d; Hash: 3
 
/// %add4 = add i32 %c, %d ; Hash: 1
 
/// \endcode
 
/// And produce a "numeric string representation" like so:
 
/// 1, 1, 2, unique_integer_1, 3, 1, unique_integer_2
 
///
 
/// TODO: This is very similar to the MachineOutliner, and should be
 
/// consolidated into the same interface.
 
struct IRInstructionMapper {
 
  /// The starting illegal instruction number to map to.
 
  ///
 
  /// Set to -3 for compatibility with DenseMapInfo<unsigned>.
 
  unsigned IllegalInstrNumber = static_cast<unsigned>(-3);
 
 
 
  /// The next available integer to assign to a legal Instruction to.
 
  unsigned LegalInstrNumber = 0;
 
 
 
  /// Correspondence from IRInstructionData to unsigned integers.
 
  DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>
 
      InstructionIntegerMap;
 
 
 
  /// A mapping for a basic block in a module to its assigned number/location
 
  /// in the module.
 
  DenseMap<BasicBlock *, unsigned> BasicBlockToInteger;
 
 
 
  /// Set if we added an illegal number in the previous step.
 
  /// Since each illegal number is unique, we only need one of them between
 
  /// each range of legal numbers. This lets us make sure we don't add more
 
  /// than one illegal number per range.
 
  bool AddedIllegalLastTime = false;
 
 
 
  /// Marks whether we found a illegal instruction in the previous step.
 
  bool CanCombineWithPrevInstr = false;
 
 
 
  /// Marks whether we have found a set of instructions that is long enough
 
  /// to be considered for similarity.
 
  bool HaveLegalRange = false;
 
 
 
  /// Marks whether we should use exact function names, as well as types to
 
  /// find similarity between calls.
 
  bool EnableMatchCallsByName = false;
 
 
 
  /// This allocator pointer is in charge of holding on to the IRInstructionData
 
  /// so it is not deallocated until whatever external tool is using it is done
 
  /// with the information.
 
  SpecificBumpPtrAllocator<IRInstructionData> *InstDataAllocator = nullptr;
 
 
 
  /// This allocator pointer is in charge of creating the IRInstructionDataList
 
  /// so it is not deallocated until whatever external tool is using it is done
 
  /// with the information.
 
  SpecificBumpPtrAllocator<IRInstructionDataList> *IDLAllocator = nullptr;
 
 
 
  /// Get an allocated IRInstructionData struct using the InstDataAllocator.
 
  ///
 
  /// \param I - The Instruction to wrap with IRInstructionData.
 
  /// \param Legality - A boolean value that is true if the instruction is to
 
  /// be considered for similarity, and false if not.
 
  /// \param IDL - The InstructionDataList that the IRInstructionData is
 
  /// inserted into.
 
  /// \returns An allocated IRInstructionData struct.
 
  IRInstructionData *allocateIRInstructionData(Instruction &I, bool Legality,
 
                                               IRInstructionDataList &IDL);
 
 
 
  /// Get an empty allocated IRInstructionData struct using the
 
  /// InstDataAllocator.
 
  ///
 
  /// \param IDL - The InstructionDataList that the IRInstructionData is
 
  /// inserted into.
 
  /// \returns An allocated IRInstructionData struct.
 
  IRInstructionData *allocateIRInstructionData(IRInstructionDataList &IDL);
 
 
 
  /// Get an allocated IRInstructionDataList object using the IDLAllocator.
 
  ///
 
  /// \returns An allocated IRInstructionDataList object.
 
  IRInstructionDataList *allocateIRInstructionDataList();
 
 
 
  IRInstructionDataList *IDL = nullptr;
 
 
 
  /// Assigns values to all the basic blocks in function \p F starting from
 
  /// integer \p BBNumber.
 
  ///
 
  /// \param F - The function containing the basic blocks to assign numbers to.
 
  /// \param BBNumber - The number to start from.
 
  void initializeForBBs(Function &F, unsigned &BBNumber) {
 
    for (BasicBlock &BB : F)
 
      BasicBlockToInteger.insert(std::make_pair(&BB, BBNumber++));
 
  }
 
 
 
  /// Assigns values to all the basic blocks in Module \p M.
 
  /// \param M - The module containing the basic blocks to assign numbers to.
 
  void initializeForBBs(Module &M) {
 
    unsigned BBNumber = 0;
 
    for (Function &F : M)
 
      initializeForBBs(F, BBNumber);
 
  }
 
 
 
  /// Maps the Instructions in a BasicBlock \p BB to legal or illegal integers
 
  /// determined by \p InstrType. Two Instructions are mapped to the same value
 
  /// if they are close as defined by the InstructionData class above.
 
  ///
 
  /// \param [in] BB - The BasicBlock to be mapped to integers.
 
  /// \param [in,out] InstrList - Vector of IRInstructionData to append to.
 
  /// \param [in,out] IntegerMapping - Vector of unsigned integers to append to.
 
  void convertToUnsignedVec(BasicBlock &BB,
 
                            std::vector<IRInstructionData *> &InstrList,
 
                            std::vector<unsigned> &IntegerMapping);
 
 
 
  /// Maps an Instruction to a legal integer.
 
  ///
 
  /// \param [in] It - The Instruction to be mapped to an integer.
 
  /// \param [in,out] IntegerMappingForBB - Vector of unsigned integers to
 
  /// append to.
 
  /// \param [in,out] InstrListForBB - Vector of InstructionData to append to.
 
  /// \returns The integer \p It was mapped to.
 
  unsigned mapToLegalUnsigned(BasicBlock::iterator &It,
 
                              std::vector<unsigned> &IntegerMappingForBB,
 
                              std::vector<IRInstructionData *> &InstrListForBB);
 
 
 
  /// Maps an Instruction to an illegal integer.
 
  ///
 
  /// \param [in] It - The \p Instruction to be mapped to an integer.
 
  /// \param [in,out] IntegerMappingForBB - Vector of unsigned integers to
 
  /// append to.
 
  /// \param [in,out] InstrListForBB - Vector of IRInstructionData to append to.
 
  /// \param End - true if creating a dummy IRInstructionData at the end of a
 
  /// basic block.
 
  /// \returns The integer \p It was mapped to.
 
  unsigned mapToIllegalUnsigned(
 
      BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
 
      std::vector<IRInstructionData *> &InstrListForBB, bool End = false);
 
 
 
  IRInstructionMapper(SpecificBumpPtrAllocator<IRInstructionData> *IDA,
 
                      SpecificBumpPtrAllocator<IRInstructionDataList> *IDLA)
 
      : InstDataAllocator(IDA), IDLAllocator(IDLA) {
 
    // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
 
    // changed.
 
    assert(DenseMapInfo<unsigned>::getEmptyKey() == static_cast<unsigned>(-1) &&
 
           "DenseMapInfo<unsigned>'s empty key isn't -1!");
 
    assert(DenseMapInfo<unsigned>::getTombstoneKey() ==
 
               static_cast<unsigned>(-2) &&
 
           "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
 
 
 
    IDL = new (IDLAllocator->Allocate())
 
        IRInstructionDataList();
 
  }
 
 
 
  /// Custom InstVisitor to classify different instructions for whether it can
 
  /// be analyzed for similarity.
 
  struct InstructionClassification
 
      : public InstVisitor<InstructionClassification, InstrType> {
 
    InstructionClassification() = default;
 
 
 
    // TODO: Determine a scheme to resolve when the label is similar enough.
 
    InstrType visitBranchInst(BranchInst &BI) {
 
      if (EnableBranches)
 
        return Legal;
 
      return Illegal;
 
    }
 
    InstrType visitPHINode(PHINode &PN) { 
 
      if (EnableBranches)
 
        return Legal;
 
      return Illegal;
 
    }
 
    // TODO: Handle allocas.
 
    InstrType visitAllocaInst(AllocaInst &AI) { return Illegal; }
 
    // We exclude variable argument instructions since variable arguments
 
    // requires extra checking of the argument list.
 
    InstrType visitVAArgInst(VAArgInst &VI) { return Illegal; }
 
    // We exclude all exception handling cases since they are so context
 
    // dependent.
 
    InstrType visitLandingPadInst(LandingPadInst &LPI) { return Illegal; }
 
    InstrType visitFuncletPadInst(FuncletPadInst &FPI) { return Illegal; }
 
    // DebugInfo should be included in the regions, but should not be
 
    // analyzed for similarity as it has no bearing on the outcome of the
 
    // program.
 
    InstrType visitDbgInfoIntrinsic(DbgInfoIntrinsic &DII) { return Invisible; }
 
    InstrType visitIntrinsicInst(IntrinsicInst &II) {
 
      // These are disabled due to complications in the CodeExtractor when
 
      // outlining these instructions.  For instance, It is unclear what we
 
      // should do when moving only the start or end lifetime instruction into
 
      // an outlined function. Also, assume-like intrinsics could be removed
 
      // from the region, removing arguments, causing discrepencies in the
 
      // number of inputs between different regions.
 
      if (II.isAssumeLikeIntrinsic())
 
        return Illegal;
 
      return EnableIntrinsics ? Legal : Illegal;
 
    }
 
    // We only allow call instructions where the function has a name and
 
    // is not an indirect call.
 
    InstrType visitCallInst(CallInst &CI) {
 
      Function *F = CI.getCalledFunction();
 
      bool IsIndirectCall = CI.isIndirectCall();
 
      if (IsIndirectCall && !EnableIndirectCalls)
 
        return Illegal;
 
      if (!F && !IsIndirectCall)
 
        return Illegal;
 
      // Functions marked with the swifttailcc and tailcc calling conventions
 
      // require special handling when outlining musttail functions.  The
 
      // calling convention must be passed down to the outlined function as
 
      // well. Further, there is special handling for musttail calls as well,
 
      // requiring a return call directly after.  For now, the outliner does not
 
      // support this, so we do not handle matching this case either.
 
      if ((CI.getCallingConv() == CallingConv::SwiftTail ||
 
           CI.getCallingConv() == CallingConv::Tail) &&
 
          !EnableMustTailCalls)
 
        return Illegal;
 
      if (CI.isMustTailCall() && !EnableMustTailCalls)
 
        return Illegal;
 
      return Legal;
 
    }
 
    // TODO: We do not current handle similarity that changes the control flow.
 
    InstrType visitInvokeInst(InvokeInst &II) { return Illegal; }
 
    // TODO: We do not current handle similarity that changes the control flow.
 
    InstrType visitCallBrInst(CallBrInst &CBI) { return Illegal; }
 
    // TODO: Handle interblock similarity.
 
    InstrType visitTerminator(Instruction &I) { return Illegal; }
 
    InstrType visitInstruction(Instruction &I) { return Legal; }
 
 
 
    // The flag variable that lets the classifier know whether we should
 
    // allow branches to be checked for similarity.
 
    bool EnableBranches = false;
 
 
 
    // The flag variable that lets the classifier know whether we should
 
    // allow indirect calls to be considered legal instructions.
 
    bool EnableIndirectCalls = false;
 
 
 
    // Flag that lets the classifier know whether we should allow intrinsics to
 
    // be checked for similarity.
 
    bool EnableIntrinsics = false;
 
  
 
    // Flag that lets the classifier know whether we should allow tail calls to
 
    // be checked for similarity.
 
    bool EnableMustTailCalls = false;
 
  };
 
 
 
  /// Maps an Instruction to a member of InstrType.
 
  InstructionClassification InstClassifier;
 
};
 
 
 
/// This is a class that wraps a range of IRInstructionData from one point to
 
/// another in the vector of IRInstructionData, which is a region of the
 
/// program.  It is also responsible for defining the structure within this
 
/// region of instructions.
 
///
 
/// The structure of a region is defined through a value numbering system
 
/// assigned to each unique value in a region at the creation of the
 
/// IRSimilarityCandidate.
 
///
 
/// For example, for each Instruction we add a mapping for each new
 
/// value seen in that Instruction.
 
/// IR:                    Mapping Added:
 
/// %add1 = add i32 %a, c1    %add1 -> 3, %a -> 1, c1 -> 2
 
/// %add2 = add i32 %a, %1    %add2 -> 4
 
/// %add3 = add i32 c2, c1    %add3 -> 6, c2 -> 5
 
///
 
/// We can compare IRSimilarityCandidates against one another.
 
/// The \ref isSimilar function compares each IRInstructionData against one
 
/// another and if we have the same sequences of IRInstructionData that would
 
/// create the same hash, we have similar IRSimilarityCandidates.
 
///
 
/// We can also compare the structure of IRSimilarityCandidates. If we can
 
/// create a mapping of registers in the region contained by one
 
/// IRSimilarityCandidate to the region contained by different
 
/// IRSimilarityCandidate, they can be considered structurally similar.
 
///
 
/// IRSimilarityCandidate1:   IRSimilarityCandidate2:
 
/// %add1 = add i32 %a, %b    %add1 = add i32 %d, %e
 
/// %add2 = add i32 %a, %c    %add2 = add i32 %d, %f
 
/// %add3 = add i32 c1, c2    %add3 = add i32 c3, c4
 
///
 
/// Can have the following mapping from candidate to candidate of:
 
/// %a -> %d, %b -> %e, %c -> %f, c1 -> c3, c2 -> c4
 
/// and can be considered similar.
 
///
 
/// IRSimilarityCandidate1:   IRSimilarityCandidate2:
 
/// %add1 = add i32 %a, %b    %add1 = add i32 %d, c4
 
/// %add2 = add i32 %a, %c    %add2 = add i32 %d, %f
 
/// %add3 = add i32 c1, c2    %add3 = add i32 c3, c4
 
///
 
/// We cannot create the same mapping since the use of c4 is not used in the
 
/// same way as %b or c2.
 
class IRSimilarityCandidate {
 
private:
 
  /// The start index of this IRSimilarityCandidate in the instruction list.
 
  unsigned StartIdx = 0;
 
 
 
  /// The number of instructions in this IRSimilarityCandidate.
 
  unsigned Len = 0;
 
 
 
  /// The first instruction in this IRSimilarityCandidate.
 
  IRInstructionData *FirstInst = nullptr;
 
 
 
  /// The last instruction in this IRSimilarityCandidate.
 
  IRInstructionData *LastInst = nullptr;
 
 
 
  /// Global Value Numbering structures
 
  /// @{
 
  /// Stores the mapping of the value to the number assigned to it in the
 
  /// IRSimilarityCandidate.
 
  DenseMap<Value *, unsigned> ValueToNumber;
 
  /// Stores the mapping of the number to the value assigned this number.
 
  DenseMap<unsigned, Value *> NumberToValue;
 
  /// Stores the mapping of a value's number to canonical numbering in the
 
  /// candidate's respective similarity group.
 
  DenseMap<unsigned, unsigned> NumberToCanonNum;
 
  /// Stores the mapping of canonical number in the candidate's respective
 
  /// similarity group to a value number.
 
  DenseMap<unsigned, unsigned> CanonNumToNumber;
 
  /// @}
 
 
 
public:
 
  /// \param StartIdx - The starting location of the region.
 
  /// \param Len - The length of the region.
 
  /// \param FirstInstIt - The starting IRInstructionData of the region.
 
  /// \param LastInstIt - The ending IRInstructionData of the region.
 
  IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
 
                        IRInstructionData *FirstInstIt,
 
                        IRInstructionData *LastInstIt);
 
 
 
  /// \param A - The first IRInstructionCandidate to compare.
 
  /// \param B - The second IRInstructionCandidate to compare.
 
  /// \returns True when every IRInstructionData in \p A is similar to every
 
  /// IRInstructionData in \p B.
 
  static bool isSimilar(const IRSimilarityCandidate &A,
 
                        const IRSimilarityCandidate &B);
 
 
 
  /// \param [in] A - The first IRInstructionCandidate to compare.
 
  /// \param [in] B - The second IRInstructionCandidate to compare.
 
  /// \returns True when every IRInstructionData in \p A is structurally similar
 
  /// to \p B.
 
  static bool compareStructure(const IRSimilarityCandidate &A,
 
                               const IRSimilarityCandidate &B);
 
 
 
  /// \param [in] A - The first IRInstructionCandidate to compare.
 
  /// \param [in] B - The second IRInstructionCandidate to compare.
 
  /// \param [in,out] ValueNumberMappingA - A mapping of value numbers from
 
  /// candidate \p A to candidate \B.
 
  /// \param [in,out] ValueNumberMappingB - A mapping of value numbers from
 
  /// candidate \p B to candidate \A.
 
  /// \returns True when every IRInstructionData in \p A is structurally similar
 
  /// to \p B.
 
  static bool
 
  compareStructure(const IRSimilarityCandidate &A,
 
                   const IRSimilarityCandidate &B,
 
                   DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
 
                   DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB);
 
 
 
  struct OperandMapping {
 
    /// The IRSimilarityCandidate that holds the instruction the OperVals were
 
    /// pulled from.
 
    const IRSimilarityCandidate &IRSC;
 
 
 
    /// The operand values to be analyzed.
 
    ArrayRef<Value *> &OperVals;
 
 
 
    /// The current mapping of global value numbers from one IRSimilarityCandidate
 
    /// to another IRSimilarityCandidate.
 
    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMapping;
 
  };
 
 
 
  /// A helper struct to hold the candidate, for a branch instruction, the
 
  /// relative location of a label, and the label itself.  This is mostly to
 
  /// group the values together before passing them as a bundle to a function.
 
  struct RelativeLocMapping {
 
    /// The IRSimilarityCandidate that holds the instruction the relative
 
    /// location was pulled from.
 
    const IRSimilarityCandidate &IRSC;
 
 
 
    /// The relative location to be analyzed.
 
    int RelativeLocation;
 
 
 
    /// The corresponding value.
 
    Value *OperVal;
 
  };
 
 
 
  /// Compare the operands in \p A and \p B and check that the current mapping
 
  /// of global value numbers from \p A to \p B and \p B to \A is consistent.
 
  ///
 
  /// \param A - The first IRInstructionCandidate, operand values, and current
 
  /// operand mappings to compare.
 
  /// \param B - The second IRInstructionCandidate, operand values, and current
 
  /// operand mappings to compare.
 
  /// \returns true if the IRSimilarityCandidates operands are compatible.
 
  static bool compareNonCommutativeOperandMapping(OperandMapping A,
 
                                                  OperandMapping B);
 
 
 
  /// Compare the operands in \p A and \p B and check that the current mapping
 
  /// of global value numbers from \p A to \p B and \p B to \A is consistent
 
  /// given that the operands are commutative.
 
  ///
 
  /// \param A - The first IRInstructionCandidate, operand values, and current
 
  /// operand mappings to compare.
 
  /// \param B - The second IRInstructionCandidate, operand values, and current
 
  /// operand mappings to compare.
 
  /// \returns true if the IRSimilarityCandidates operands are compatible.
 
  static bool compareCommutativeOperandMapping(OperandMapping A,
 
                                               OperandMapping B);
 
 
 
  /// Compare the relative locations in \p A and \p B and check that the
 
  /// distances match if both locations are contained in the region, and that
 
  /// the branches both point outside the region if they do not.
 
  /// Example Region:
 
  /// \code
 
  /// entry:
 
  ///   br i1 %0, label %block_1, label %block_3
 
  /// block_0:
 
  ///   br i1 %0, label %block_1, label %block_2
 
  /// block_1:
 
  ///   br i1 %0, label %block_2, label %block_3
 
  /// block_2:
 
  ///   br i1 %1, label %block_1, label %block_4
 
  /// block_3:
 
  ///   br i1 %2, label %block_2, label %block_5
 
  /// \endcode
 
  /// If we compare the branches in block_0 and block_1 the relative values are
 
  /// 1 and 2 for both, so we consider this a match.
 
  ///
 
  /// If we compare the branches in entry and block_0 the relative values are
 
  /// 2 and 3, and 1 and 2 respectively.  Since these are not the same we do not
 
  /// consider them a match.
 
  ///
 
  /// If we compare the branches in block_1 and block_2 the relative values are
 
  /// 1 and 2, and -1 and None respectively.  As a result we do not consider
 
  /// these to be the same
 
  ///
 
  /// If we compare the branches in block_2 and block_3 the relative values are
 
  /// -1 and None for both.  We do consider these to be a match.
 
  ///
 
  /// \param A - The first IRInstructionCandidate, relative location value,
 
  /// and incoming block.
 
  /// \param B - The second IRInstructionCandidate, relative location value,
 
  /// and incoming block.
 
  /// \returns true if the relative locations match.
 
  static bool checkRelativeLocations(RelativeLocMapping A,
 
                                     RelativeLocMapping B);
 
 
 
  /// Create a mapping from the value numbering to a different separate set of
 
  /// numbers. This will serve as a guide for relating one candidate to another.
 
  /// The canonical number gives use the ability identify which global value
 
  /// number in one candidate relates to the global value number in the other.
 
  ///
 
  /// \param [in, out] CurrCand - The IRSimilarityCandidate to create a
 
  /// canonical numbering for.
 
  static void createCanonicalMappingFor(IRSimilarityCandidate &CurrCand);
 
 
 
  /// Create a mapping for the value numbering of the calling
 
  /// IRSimilarityCandidate, to a different separate set of numbers, based on
 
  /// the canonical ordering in \p SourceCand. These are defined based on the
 
  /// found mappings in \p ToSourceMapping and \p FromSourceMapping.  Both of
 
  /// these relationships should have the same information, just in opposite
 
  /// directions.
 
  ///
 
  /// \param [in, out] SourceCand - The IRSimilarityCandidate to create a
 
  /// canonical numbering from.
 
  /// \param ToSourceMapping - The mapping of value numbers from this candidate
 
  /// to \p SourceCand.
 
  /// \param FromSourceMapping - The mapping of value numbers from \p SoureCand
 
  /// to this candidate.
 
  void createCanonicalRelationFrom(
 
      IRSimilarityCandidate &SourceCand,
 
      DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
 
      DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping);
 
 
 
  /// \param [in,out] BBSet - The set to track the basic blocks.
 
  void getBasicBlocks(DenseSet<BasicBlock *> &BBSet) const {
 
    for (IRInstructionData &ID : *this) {
 
      BasicBlock *BB = ID.Inst->getParent();
 
      BBSet.insert(BB);
 
    }
 
  }
 
 
 
  /// \param [in,out] BBSet - The set to track the basic blocks.
 
  /// \param [in,out] BBList - A list in order of use to track the basic blocks.
 
  void getBasicBlocks(DenseSet<BasicBlock *> &BBSet,
 
                      SmallVector<BasicBlock *> &BBList) const {
 
    for (IRInstructionData &ID : *this) {
 
      BasicBlock *BB = ID.Inst->getParent();
 
      if (BBSet.insert(BB).second)
 
        BBList.push_back(BB);
 
    }
 
  }
 
 
 
  /// Compare the start and end indices of the two IRSimilarityCandidates for
 
  /// whether they overlap. If the start instruction of one
 
  /// IRSimilarityCandidate is less than the end instruction of the other, and
 
  /// the start instruction of one is greater than the start instruction of the
 
  /// other, they overlap.
 
  ///
 
  /// \returns true if the IRSimilarityCandidates do not have overlapping
 
  /// instructions.
 
  static bool overlap(const IRSimilarityCandidate &A,
 
                      const IRSimilarityCandidate &B);
 
 
 
  /// \returns the number of instructions in this Candidate.
 
  unsigned getLength() const { return Len; }
 
 
 
  /// \returns the start index of this IRSimilarityCandidate.
 
  unsigned getStartIdx() const { return StartIdx; }
 
 
 
  /// \returns the end index of this IRSimilarityCandidate.
 
  unsigned getEndIdx() const { return StartIdx + Len - 1; }
 
 
 
  /// \returns The first IRInstructionData.
 
  IRInstructionData *front() const { return FirstInst; }
 
  /// \returns The last IRInstructionData.
 
  IRInstructionData *back() const { return LastInst; }
 
 
 
  /// \returns The first Instruction.
 
  Instruction *frontInstruction() { return FirstInst->Inst; }
 
  /// \returns The last Instruction
 
  Instruction *backInstruction() { return LastInst->Inst; }
 
 
 
  /// \returns The BasicBlock the IRSimilarityCandidate starts in.
 
  BasicBlock *getStartBB() { return FirstInst->Inst->getParent(); }
 
  /// \returns The BasicBlock the IRSimilarityCandidate ends in.
 
  BasicBlock *getEndBB() { return LastInst->Inst->getParent(); }
 
 
 
  /// \returns The Function that the IRSimilarityCandidate is located in.
 
  Function *getFunction() { return getStartBB()->getParent(); }
 
 
 
  /// Finds the positive number associated with \p V if it has been mapped.
 
  /// \param [in] V - the Value to find.
 
  /// \returns The positive number corresponding to the value.
 
  /// \returns std::nullopt if not present.
 
  std::optional<unsigned> getGVN(Value *V) {
 
    assert(V != nullptr && "Value is a nullptr?");
 
    DenseMap<Value *, unsigned>::iterator VNIt = ValueToNumber.find(V);
 
    if (VNIt == ValueToNumber.end())
 
      return std::nullopt;
 
    return VNIt->second;
 
  }
 
 
 
  /// Finds the Value associate with \p Num if it exists.
 
  /// \param [in] Num - the number to find.
 
  /// \returns The Value associated with the number.
 
  /// \returns std::nullopt if not present.
 
  std::optional<Value *> fromGVN(unsigned Num) {
 
    DenseMap<unsigned, Value *>::iterator VNIt = NumberToValue.find(Num);
 
    if (VNIt == NumberToValue.end())
 
      return std::nullopt;
 
    assert(VNIt->second != nullptr && "Found value is a nullptr!");
 
    return VNIt->second;
 
  }
 
 
 
  /// Find the canonical number from the global value number \p N stored in the
 
  /// candidate.
 
  ///
 
  /// \param N - The global value number to find the canonical number for.
 
  /// \returns An optional containing the value, and std::nullopt if it could
 
  /// not be found.
 
  std::optional<unsigned> getCanonicalNum(unsigned N) {
 
    DenseMap<unsigned, unsigned>::iterator NCIt = NumberToCanonNum.find(N);
 
    if (NCIt == NumberToCanonNum.end())
 
      return std::nullopt;
 
    return NCIt->second;
 
  }
 
 
 
  /// Find the global value number from the canonical number \p N stored in the
 
  /// candidate.
 
  ///
 
  /// \param N - The canonical number to find the global vlaue number for.
 
  /// \returns An optional containing the value, and std::nullopt if it could
 
  /// not be found.
 
  std::optional<unsigned> fromCanonicalNum(unsigned N) {
 
    DenseMap<unsigned, unsigned>::iterator CNIt = CanonNumToNumber.find(N);
 
    if (CNIt == CanonNumToNumber.end())
 
      return std::nullopt;
 
    return CNIt->second;
 
  }
 
 
 
  /// \param RHS -The IRSimilarityCandidate to compare against
 
  /// \returns true if the IRSimilarityCandidate is occurs after the
 
  /// IRSimilarityCandidate in the program.
 
  bool operator<(const IRSimilarityCandidate &RHS) const {
 
    return getStartIdx() > RHS.getStartIdx();
 
  }
 
 
 
  using iterator = IRInstructionDataList::iterator;
 
  iterator begin() const { return iterator(front()); }
 
  iterator end() const { return std::next(iterator(back())); }
 
};
 
 
 
typedef DenseMap<IRSimilarityCandidate *,
 
                 DenseMap<unsigned, DenseSet<unsigned>>>
 
    CandidateGVNMapping;
 
typedef std::vector<IRSimilarityCandidate> SimilarityGroup;
 
typedef std::vector<SimilarityGroup> SimilarityGroupList;
 
 
 
/// This class puts all the pieces of the IRInstructionData,
 
/// IRInstructionMapper, IRSimilarityCandidate together.
 
///
 
/// It first feeds the Module or vector of Modules into the IRInstructionMapper,
 
/// and puts all the mapped instructions into a single long list of
 
/// IRInstructionData.
 
///
 
/// The list of unsigned integers is given to the Suffix Tree or similar data
 
/// structure to find repeated subsequences.  We construct an
 
/// IRSimilarityCandidate for each instance of the subsequence.  We compare them
 
/// against one another since  These repeated subsequences can have different
 
/// structure.  For each different kind of structure found, we create a
 
/// similarity group.
 
///
 
/// If we had four IRSimilarityCandidates A, B, C, and D where A, B and D are
 
/// structurally similar to one another, while C is different we would have two
 
/// SimilarityGroups:
 
///
 
/// SimilarityGroup 1:  SimilarityGroup 2
 
/// A, B, D             C
 
///
 
/// A list of the different similarity groups is then returned after
 
/// analyzing the module.
 
class IRSimilarityIdentifier {
 
public:
 
  IRSimilarityIdentifier(bool MatchBranches = true,
 
                         bool MatchIndirectCalls = true,
 
                         bool MatchCallsWithName = false,
 
                         bool MatchIntrinsics = true,
 
                         bool MatchMustTailCalls = true)
 
      : Mapper(&InstDataAllocator, &InstDataListAllocator),
 
        EnableBranches(MatchBranches), EnableIndirectCalls(MatchIndirectCalls),
 
        EnableMatchingCallsByName(MatchCallsWithName),
 
        EnableIntrinsics(MatchIntrinsics),
 
        EnableMustTailCalls(MatchMustTailCalls) {}
 
 
 
private:
 
  /// Map the instructions in the module to unsigned integers, using mapping
 
  /// already present in the Mapper if possible.
 
  ///
 
  /// \param [in] M Module - To map to integers.
 
  /// \param [in,out] InstrList - The vector to append IRInstructionData to.
 
  /// \param [in,out] IntegerMapping - The vector to append integers to.
 
  void populateMapper(Module &M, std::vector<IRInstructionData *> &InstrList,
 
                      std::vector<unsigned> &IntegerMapping);
 
 
 
  /// Map the instructions in the modules vector to unsigned integers, using
 
  /// mapping already present in the mapper if possible.
 
  ///
 
  /// \param [in] Modules - The list of modules to use to populate the mapper
 
  /// \param [in,out] InstrList - The vector to append IRInstructionData to.
 
  /// \param [in,out] IntegerMapping - The vector to append integers to.
 
  void populateMapper(ArrayRef<std::unique_ptr<Module>> &Modules,
 
                      std::vector<IRInstructionData *> &InstrList,
 
                      std::vector<unsigned> &IntegerMapping);
 
 
 
  /// Find the similarity candidates in \p InstrList and corresponding
 
  /// \p UnsignedVec
 
  ///
 
  /// \param [in,out] InstrList - The vector to append IRInstructionData to.
 
  /// \param [in,out] IntegerMapping - The vector to append integers to.
 
  /// candidates found in the program.
 
  void findCandidates(std::vector<IRInstructionData *> &InstrList,
 
                      std::vector<unsigned> &IntegerMapping);
 
 
 
public:
 
  // Find the IRSimilarityCandidates in the \p Modules and group by structural
 
  // similarity in a SimilarityGroup, each group is returned in a
 
  // SimilarityGroupList.
 
  //
 
  // \param [in] Modules - the modules to analyze.
 
  // \returns The groups of similarity ranges found in the modules.
 
  SimilarityGroupList &
 
  findSimilarity(ArrayRef<std::unique_ptr<Module>> Modules);
 
 
 
  // Find the IRSimilarityCandidates in the given Module grouped by structural
 
  // similarity in a SimilarityGroup, contained inside a SimilarityGroupList.
 
  //
 
  // \param [in] M - the module to analyze.
 
  // \returns The groups of similarity ranges found in the module.
 
  SimilarityGroupList &findSimilarity(Module &M);
 
 
 
  // Clears \ref SimilarityCandidates if it is already filled by a previous run.
 
  void resetSimilarityCandidates() {
 
    // If we've already analyzed a Module or set of Modules, so we must clear
 
    // the SimilarityCandidates to make sure we do not have only old values
 
    // hanging around.
 
    if (SimilarityCandidates)
 
      SimilarityCandidates->clear();
 
    else
 
      SimilarityCandidates = SimilarityGroupList();
 
  }
 
 
 
  // \returns The groups of similarity ranges found in the most recently passed
 
  // set of modules.
 
  std::optional<SimilarityGroupList> &getSimilarity() {
 
    return SimilarityCandidates;
 
  }
 
 
 
private:
 
  /// The allocator for IRInstructionData.
 
  SpecificBumpPtrAllocator<IRInstructionData> InstDataAllocator;
 
 
 
  /// The allocator for IRInstructionDataLists.
 
  SpecificBumpPtrAllocator<IRInstructionDataList> InstDataListAllocator;
 
 
 
  /// Map Instructions to unsigned integers and wraps the Instruction in an
 
  /// instance of IRInstructionData.
 
  IRInstructionMapper Mapper;
 
 
 
  /// The flag variable that marks whether we should check branches for
 
  /// similarity, or only look within basic blocks.
 
  bool EnableBranches = true;
 
 
 
  /// The flag variable that marks whether we allow indirect calls to be checked
 
  /// for similarity, or exclude them as a legal instruction.
 
  bool EnableIndirectCalls = true;
 
 
 
  /// The flag variable that marks whether we allow calls to be marked as
 
  /// similar if they do not have the same name, only the same calling
 
  /// convention, attributes and type signature.
 
  bool EnableMatchingCallsByName = true;
 
 
 
  /// The flag variable that marks whether we should check intrinsics for
 
  /// similarity.
 
  bool EnableIntrinsics = true;
 
 
 
  // The flag variable that marks whether we should allow tailcalls
 
  // to be checked for similarity.
 
  bool EnableMustTailCalls = false;
 
 
 
  /// The SimilarityGroups found with the most recent run of \ref
 
  /// findSimilarity. std::nullopt if there is no recent run.
 
  std::optional<SimilarityGroupList> SimilarityCandidates;
 
};
 
 
 
} // end namespace IRSimilarity
 
 
 
/// An analysis pass based on legacy pass manager that runs and returns
 
/// IRSimilarityIdentifier run on the Module.
 
class IRSimilarityIdentifierWrapperPass : public ModulePass {
 
  std::unique_ptr<IRSimilarity::IRSimilarityIdentifier> IRSI;
 
 
 
public:
 
  static char ID;
 
  IRSimilarityIdentifierWrapperPass();
 
 
 
  IRSimilarity::IRSimilarityIdentifier &getIRSI() { return *IRSI; }
 
  const IRSimilarity::IRSimilarityIdentifier &getIRSI() const { return *IRSI; }
 
 
 
  bool doInitialization(Module &M) override;
 
  bool doFinalization(Module &M) override;
 
  bool runOnModule(Module &M) override;
 
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 
    AU.setPreservesAll();
 
  }
 
};
 
 
 
/// An analysis pass that runs and returns the IRSimilarityIdentifier run on the
 
/// Module.
 
class IRSimilarityAnalysis : public AnalysisInfoMixin<IRSimilarityAnalysis> {
 
public:
 
  typedef IRSimilarity::IRSimilarityIdentifier Result;
 
 
 
  Result run(Module &M, ModuleAnalysisManager &);
 
 
 
private:
 
  friend AnalysisInfoMixin<IRSimilarityAnalysis>;
 
  static AnalysisKey Key;
 
};
 
 
 
/// Printer pass that uses \c IRSimilarityAnalysis.
 
class IRSimilarityAnalysisPrinterPass
 
    : public PassInfoMixin<IRSimilarityAnalysisPrinterPass> {
 
  raw_ostream &OS;
 
 
 
public:
 
  explicit IRSimilarityAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
 
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H