//===- llvm/Analysis/DivergenceAnalysis.h - Divergence Analysis -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// \file
 
// The divergence analysis determines which instructions and branches are
 
// divergent given a set of divergent source instructions.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_DIVERGENCEANALYSIS_H
 
#define LLVM_ANALYSIS_DIVERGENCEANALYSIS_H
 
 
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/Analysis/SyncDependenceAnalysis.h"
 
#include "llvm/IR/PassManager.h"
 
#include <vector>
 
 
 
namespace llvm {
 
class Function;
 
class Instruction;
 
class Loop;
 
class raw_ostream;
 
class TargetTransformInfo;
 
class Value;
 
 
 
/// \brief Generic divergence analysis for reducible CFGs.
 
///
 
/// This analysis propagates divergence in a data-parallel context from sources
 
/// of divergence to all users. It requires reducible CFGs. All assignments
 
/// should be in SSA form.
 
class DivergenceAnalysisImpl {
 
public:
 
  /// \brief This instance will analyze the whole function \p F or the loop \p
 
  /// RegionLoop.
 
  ///
 
  /// \param RegionLoop if non-null the analysis is restricted to \p RegionLoop.
 
  /// Otherwise the whole function is analyzed.
 
  /// \param IsLCSSAForm whether the analysis may assume that the IR in the
 
  /// region in LCSSA form.
 
  DivergenceAnalysisImpl(const Function &F, const Loop *RegionLoop,
 
                         const DominatorTree &DT, const LoopInfo &LI,
 
                         SyncDependenceAnalysis &SDA, bool IsLCSSAForm);
 
 
 
  /// \brief The loop that defines the analyzed region (if any).
 
  const Loop *getRegionLoop() const { return RegionLoop; }
 
  const Function &getFunction() const { return F; }
 
 
 
  /// \brief Whether \p BB is part of the region.
 
  bool inRegion(const BasicBlock &BB) const;
 
  /// \brief Whether \p I is part of the region.
 
  bool inRegion(const Instruction &I) const;
 
 
 
  /// \brief Mark \p UniVal as a value that is always uniform.
 
  void addUniformOverride(const Value &UniVal);
 
 
 
  /// \brief Mark \p DivVal as a value that is always divergent. Will not do so
 
  /// if `isAlwaysUniform(DivVal)`.
 
  /// \returns Whether the tracked divergence state of \p DivVal changed.
 
  bool markDivergent(const Value &DivVal);
 
 
 
  /// \brief Propagate divergence to all instructions in the region.
 
  /// Divergence is seeded by calls to \p markDivergent.
 
  void compute();
 
 
 
  /// \brief Whether any value was marked or analyzed to be divergent.
 
  bool hasDetectedDivergence() const { return !DivergentValues.empty(); }
 
 
 
  /// \brief Whether \p Val will always return a uniform value regardless of its
 
  /// operands
 
  bool isAlwaysUniform(const Value &Val) const;
 
 
 
  /// \brief Whether \p Val is divergent at its definition.
 
  bool isDivergent(const Value &Val) const;
 
 
 
  /// \brief Whether \p U is divergent. Uses of a uniform value can be
 
  /// divergent.
 
  bool isDivergentUse(const Use &U) const;
 
 
 
private:
 
  /// \brief Mark \p Term as divergent and push all Instructions that become
 
  /// divergent as a result on the worklist.
 
  void analyzeControlDivergence(const Instruction &Term);
 
  /// \brief Mark all phi nodes in \p JoinBlock as divergent and push them on
 
  /// the worklist.
 
  void taintAndPushPhiNodes(const BasicBlock &JoinBlock);
 
 
 
  /// \brief Identify all Instructions that become divergent because \p DivExit
 
  /// is a divergent loop exit of \p DivLoop. Mark those instructions as
 
  /// divergent and push them on the worklist.
 
  void propagateLoopExitDivergence(const BasicBlock &DivExit,
 
                                   const Loop &DivLoop);
 
 
 
  /// \brief Internal implementation function for propagateLoopExitDivergence.
 
  void analyzeLoopExitDivergence(const BasicBlock &DivExit,
 
                                 const Loop &OuterDivLoop);
 
 
 
  /// \brief Mark all instruction as divergent that use a value defined in \p
 
  /// OuterDivLoop. Push their users on the worklist.
 
  void analyzeTemporalDivergence(const Instruction &I,
 
                                 const Loop &OuterDivLoop);
 
 
 
  /// \brief Push all users of \p Val (in the region) to the worklist.
 
  void pushUsers(const Value &I);
 
 
 
  /// \brief Whether \p Val is divergent when read in \p ObservingBlock.
 
  bool isTemporalDivergent(const BasicBlock &ObservingBlock,
 
                           const Value &Val) const;
 
 
 
private:
 
  const Function &F;
 
  // If regionLoop != nullptr, analysis is only performed within \p RegionLoop.
 
  // Otherwise, analyze the whole function
 
  const Loop *RegionLoop;
 
 
 
  const DominatorTree &DT;
 
  const LoopInfo &LI;
 
 
 
  // Recognized divergent loops
 
  DenseSet<const Loop *> DivergentLoops;
 
 
 
  // The SDA links divergent branches to divergent control-flow joins.
 
  SyncDependenceAnalysis &SDA;
 
 
 
  // Use simplified code path for LCSSA form.
 
  bool IsLCSSAForm;
 
 
 
  // Set of known-uniform values.
 
  DenseSet<const Value *> UniformOverrides;
 
 
 
  // Detected/marked divergent values.
 
  DenseSet<const Value *> DivergentValues;
 
 
 
  // Internal worklist for divergence propagation.
 
  std::vector<const Instruction *> Worklist;
 
};
 
 
 
class DivergenceInfo {
 
  Function &F;
 
 
 
  // If the function contains an irreducible region the divergence
 
  // analysis can run indefinitely. We set ContainsIrreducible and no
 
  // analysis is actually performed on the function. All values in
 
  // this function are conservatively reported as divergent instead.
 
  bool ContainsIrreducible = false;
 
  std::unique_ptr<SyncDependenceAnalysis> SDA;
 
  std::unique_ptr<DivergenceAnalysisImpl> DA;
 
 
 
public:
 
  DivergenceInfo(Function &F, const DominatorTree &DT,
 
                 const PostDominatorTree &PDT, const LoopInfo &LI,
 
                 const TargetTransformInfo &TTI, bool KnownReducible);
 
 
 
  /// Whether any divergence was detected.
 
  bool hasDivergence() const {
 
    return ContainsIrreducible || DA->hasDetectedDivergence();
 
  }
 
 
 
  /// The GPU kernel this analysis result is for
 
  const Function &getFunction() const { return F; }
 
 
 
  /// Whether \p V is divergent at its definition.
 
  bool isDivergent(const Value &V) const {
 
    return ContainsIrreducible || DA->isDivergent(V);
 
  }
 
 
 
  /// Whether \p U is divergent. Uses of a uniform value can be divergent.
 
  bool isDivergentUse(const Use &U) const {
 
    return ContainsIrreducible || DA->isDivergentUse(U);
 
  }
 
 
 
  /// Whether \p V is uniform/non-divergent.
 
  bool isUniform(const Value &V) const { return !isDivergent(V); }
 
 
 
  /// Whether \p U is uniform/non-divergent. Uses of a uniform value can be
 
  /// divergent.
 
  bool isUniformUse(const Use &U) const { return !isDivergentUse(U); }
 
};
 
 
 
/// \brief Divergence analysis frontend for GPU kernels.
 
class DivergenceAnalysis : public AnalysisInfoMixin<DivergenceAnalysis> {
 
  friend AnalysisInfoMixin<DivergenceAnalysis>;
 
 
 
  static AnalysisKey Key;
 
 
 
public:
 
  using Result = DivergenceInfo;
 
 
 
  /// Runs the divergence analysis on @F, a GPU kernel
 
  Result run(Function &F, FunctionAnalysisManager &AM);
 
};
 
 
 
/// Printer pass to dump divergence analysis results.
 
struct DivergenceAnalysisPrinterPass
 
    : public PassInfoMixin<DivergenceAnalysisPrinterPass> {
 
  DivergenceAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
 
 
 
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
 
 
 
private:
 
  raw_ostream &OS;
 
}; // class DivergenceAnalysisPrinterPass
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_DIVERGENCEANALYSIS_H