//===- llvm/Analysis/DependenceGraphBuilder.h -------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines a builder interface that can be used to populate dependence
 
// graphs such as DDG and PDG.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_DEPENDENCEGRAPHBUILDER_H
 
#define LLVM_ANALYSIS_DEPENDENCEGRAPHBUILDER_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/EquivalenceClasses.h"
 
#include "llvm/ADT/SmallVector.h"
 
 
 
namespace llvm {
 
 
 
class BasicBlock;
 
class DependenceInfo;
 
class Instruction;
 
 
 
/// This abstract builder class defines a set of high-level steps for creating
 
/// DDG-like graphs. The client code is expected to inherit from this class and
 
/// define concrete implementation for each of the pure virtual functions used
 
/// in the high-level algorithm.
 
template <class GraphType> class AbstractDependenceGraphBuilder {
 
protected:
 
  using BasicBlockListType = SmallVectorImpl<BasicBlock *>;
 
 
 
private:
 
  using NodeType = typename GraphType::NodeType;
 
  using EdgeType = typename GraphType::EdgeType;
 
 
 
public:
 
  using ClassesType = EquivalenceClasses<BasicBlock *>;
 
  using NodeListType = SmallVector<NodeType *, 4>;
 
 
 
  AbstractDependenceGraphBuilder(GraphType &G, DependenceInfo &D,
 
                                 const BasicBlockListType &BBs)
 
      : Graph(G), DI(D), BBList(BBs) {}
 
  virtual ~AbstractDependenceGraphBuilder() = default;
 
 
 
  /// The main entry to the graph construction algorithm. It starts by
 
  /// creating nodes in increasing order of granularity and then
 
  /// adds def-use and memory edges. As one of the final stages, it
 
  /// also creates pi-block nodes to facilitate codegen in transformations
 
  /// that use dependence graphs.
 
  ///
 
  /// The algorithmic complexity of this implementation is O(V^2 * I^2), where V
 
  /// is the number of vertecies (nodes) and I is the number of instructions in
 
  /// each node. The total number of instructions, N, is equal to V * I,
 
  /// therefore the worst-case time complexity is O(N^2). The average time
 
  /// complexity is O((N^2)/2).
 
  void populate() {
 
    computeInstructionOrdinals();
 
    createFineGrainedNodes();
 
    createDefUseEdges();
 
    createMemoryDependencyEdges();
 
    simplify();
 
    createAndConnectRootNode();
 
    createPiBlocks();
 
    sortNodesTopologically();
 
  }
 
 
 
  /// Compute ordinal numbers for each instruction and store them in a map for
 
  /// future look up. These ordinals are used to compute node ordinals which are
 
  /// in turn used to order nodes that are part of a cycle.
 
  /// Instruction ordinals are assigned based on lexical program order.
 
  void computeInstructionOrdinals();
 
 
 
  /// Create fine grained nodes. These are typically atomic nodes that
 
  /// consist of a single instruction.
 
  void createFineGrainedNodes();
 
 
 
  /// Analyze the def-use chains and create edges from the nodes containing
 
  /// definitions to the nodes containing the uses.
 
  void createDefUseEdges();
 
 
 
  /// Analyze data dependencies that exist between memory loads or stores,
 
  /// in the graph nodes and create edges between them.
 
  void createMemoryDependencyEdges();
 
 
 
  /// Create a root node and add edges such that each node in the graph is
 
  /// reachable from the root.
 
  void createAndConnectRootNode();
 
 
 
  /// Apply graph abstraction to groups of nodes that belong to a strongly
 
  /// connected component of the graph to create larger compound nodes
 
  /// called pi-blocks. The purpose of this abstraction is to isolate sets of
 
  /// program elements that need to stay together during codegen and turn
 
  /// the dependence graph into an acyclic graph.
 
  void createPiBlocks();
 
 
 
  /// Go through all the nodes in the graph and collapse any two nodes
 
  /// 'a' and 'b' if all of the following are true:
 
  ///   - the only edge from 'a' is a def-use edge to 'b' and
 
  ///   - the only edge to 'b' is a def-use edge from 'a' and
 
  ///   - there is no cyclic edge from 'b' to 'a' and
 
  ///   - all instructions in 'a' and 'b' belong to the same basic block and
 
  ///   - both 'a' and 'b' are simple (single or multi instruction) nodes.
 
  void simplify();
 
 
 
  /// Topologically sort the graph nodes.
 
  void sortNodesTopologically();
 
 
 
protected:
 
  /// Create the root node of the graph.
 
  virtual NodeType &createRootNode() = 0;
 
 
 
  /// Create an atomic node in the graph given a single instruction.
 
  virtual NodeType &createFineGrainedNode(Instruction &I) = 0;
 
 
 
  /// Create a pi-block node in the graph representing a group of nodes in an
 
  /// SCC of the graph.
 
  virtual NodeType &createPiBlock(const NodeListType &L) = 0;
 
 
 
  /// Create a def-use edge going from \p Src to \p Tgt.
 
  virtual EdgeType &createDefUseEdge(NodeType &Src, NodeType &Tgt) = 0;
 
 
 
  /// Create a memory dependence edge going from \p Src to \p Tgt.
 
  virtual EdgeType &createMemoryEdge(NodeType &Src, NodeType &Tgt) = 0;
 
 
 
  /// Create a rooted edge going from \p Src to \p Tgt .
 
  virtual EdgeType &createRootedEdge(NodeType &Src, NodeType &Tgt) = 0;
 
 
 
  /// Given a pi-block node, return a vector of all the nodes contained within
 
  /// it.
 
  virtual const NodeListType &getNodesInPiBlock(const NodeType &N) = 0;
 
 
 
  /// Deallocate memory of edge \p E.
 
  virtual void destroyEdge(EdgeType &E) { delete &E; }
 
 
 
  /// Deallocate memory of node \p N.
 
  virtual void destroyNode(NodeType &N) { delete &N; }
 
 
 
  /// Return true if creation of pi-blocks are supported and desired,
 
  /// and false otherwise.
 
  virtual bool shouldCreatePiBlocks() const { return true; }
 
 
 
  /// Return true if graph simplification step is requested, and false
 
  /// otherwise.
 
  virtual bool shouldSimplify() const { return true; }
 
 
 
  /// Return true if it's safe to merge the two nodes.
 
  virtual bool areNodesMergeable(const NodeType &A,
 
                                 const NodeType &B) const = 0;
 
 
 
  /// Append the content of node \p B into node \p A and remove \p B and
 
  /// the edge between \p A and \p B from the graph.
 
  virtual void mergeNodes(NodeType &A, NodeType &B) = 0;
 
 
 
  /// Given an instruction \p I return its associated ordinal number.
 
  size_t getOrdinal(Instruction &I) {
 
    assert(InstOrdinalMap.find(&I) != InstOrdinalMap.end() &&
 
           "No ordinal computed for this instruction.");
 
    return InstOrdinalMap[&I];
 
  }
 
 
 
  /// Given a node \p N return its associated ordinal number.
 
  size_t getOrdinal(NodeType &N) {
 
    assert(NodeOrdinalMap.find(&N) != NodeOrdinalMap.end() &&
 
           "No ordinal computed for this node.");
 
    return NodeOrdinalMap[&N];
 
  }
 
 
 
  /// Map types to map instructions to nodes used when populating the graph.
 
  using InstToNodeMap = DenseMap<Instruction *, NodeType *>;
 
 
 
  /// Map Types to map instruction/nodes to an ordinal number.
 
  using InstToOrdinalMap = DenseMap<Instruction *, size_t>;
 
  using NodeToOrdinalMap = DenseMap<NodeType *, size_t>;
 
 
 
  /// Reference to the graph that gets built by a concrete implementation of
 
  /// this builder.
 
  GraphType &Graph;
 
 
 
  /// Dependence information used to create memory dependence edges in the
 
  /// graph.
 
  DependenceInfo &DI;
 
 
 
  /// The list of basic blocks to consider when building the graph.
 
  const BasicBlockListType &BBList;
 
 
 
  /// A mapping from instructions to the corresponding nodes in the graph.
 
  InstToNodeMap IMap;
 
 
 
  /// A mapping from each instruction to an ordinal number. This map is used to
 
  /// populate the \p NodeOrdinalMap.
 
  InstToOrdinalMap InstOrdinalMap;
 
 
 
  /// A mapping from nodes to an ordinal number. This map is used to sort nodes
 
  /// in a pi-block based on program order.
 
  NodeToOrdinalMap NodeOrdinalMap;
 
};
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_DEPENDENCEGRAPHBUILDER_H