//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// This file provides interfaces used to build and manipulate a call graph,
 
/// which is a very useful tool for interprocedural optimization.
 
///
 
/// Every function in a module is represented as a node in the call graph.  The
 
/// callgraph node keeps track of which functions are called by the function
 
/// corresponding to the node.
 
///
 
/// A call graph may contain nodes where the function that they correspond to
 
/// is null.  These 'external' nodes are used to represent control flow that is
 
/// not represented (or analyzable) in the module.  In particular, this
 
/// analysis builds one external node such that:
 
///   1. All functions in the module without internal linkage will have edges
 
///      from this external node, indicating that they could be called by
 
///      functions outside of the module.
 
///   2. All functions whose address is used for something more than a direct
 
///      call, for example being stored into a memory location will also have
 
///      an edge from this external node.  Since they may be called by an
 
///      unknown caller later, they must be tracked as such.
 
///
 
/// There is a second external node added for calls that leave this module.
 
/// Functions have a call edge to the external node iff:
 
///   1. The function is external, reflecting the fact that they could call
 
///      anything without internal linkage or that has its address taken.
 
///   2. The function contains an indirect function call.
 
///
 
/// As an extension in the future, there may be multiple nodes with a null
 
/// function.  These will be used when we can prove (through pointer analysis)
 
/// that an indirect call site can call only a specific set of functions.
 
///
 
/// Because of these properties, the CallGraph captures a conservative superset
 
/// of all of the caller-callee relationships, which is useful for
 
/// transformations.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_CALLGRAPH_H
 
#define LLVM_ANALYSIS_CALLGRAPH_H
 
 
 
#include "llvm/IR/InstrTypes.h"
 
#include "llvm/IR/Intrinsics.h"
 
#include "llvm/IR/PassManager.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "llvm/Pass.h"
 
#include <cassert>
 
#include <map>
 
#include <memory>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
template <class GraphType> struct GraphTraits;
 
class CallGraphNode;
 
class Function;
 
class Module;
 
class raw_ostream;
 
 
 
/// The basic data container for the call graph of a \c Module of IR.
 
///
 
/// This class exposes both the interface to the call graph for a module of IR.
 
///
 
/// The core call graph itself can also be updated to reflect changes to the IR.
 
class CallGraph {
 
  Module &M;
 
 
 
  using FunctionMapTy =
 
      std::map<const Function *, std::unique_ptr<CallGraphNode>>;
 
 
 
  /// A map from \c Function* to \c CallGraphNode*.
 
  FunctionMapTy FunctionMap;
 
 
 
  /// This node has edges to all external functions and those internal
 
  /// functions that have their address taken.
 
  CallGraphNode *ExternalCallingNode;
 
 
 
  /// This node has edges to it from all functions making indirect calls
 
  /// or calling an external function.
 
  std::unique_ptr<CallGraphNode> CallsExternalNode;
 
 
 
public:
 
  explicit CallGraph(Module &M);
 
  CallGraph(CallGraph &&Arg);
 
  ~CallGraph();
 
 
 
  void print(raw_ostream &OS) const;
 
  void dump() const;
 
 
 
  using iterator = FunctionMapTy::iterator;
 
  using const_iterator = FunctionMapTy::const_iterator;
 
 
 
  /// Returns the module the call graph corresponds to.
 
  Module &getModule() const { return M; }
 
 
 
  bool invalidate(Module &, const PreservedAnalyses &PA,
 
                  ModuleAnalysisManager::Invalidator &);
 
 
 
  inline iterator begin() { return FunctionMap.begin(); }
 
  inline iterator end() { return FunctionMap.end(); }
 
  inline const_iterator begin() const { return FunctionMap.begin(); }
 
  inline const_iterator end() const { return FunctionMap.end(); }
 
 
 
  /// Returns the call graph node for the provided function.
 
  inline const CallGraphNode *operator[](const Function *F) const {
 
    const_iterator I = FunctionMap.find(F);
 
    assert(I != FunctionMap.end() && "Function not in callgraph!");
 
    return I->second.get();
 
  }
 
 
 
  /// Returns the call graph node for the provided function.
 
  inline CallGraphNode *operator[](const Function *F) {
 
    const_iterator I = FunctionMap.find(F);
 
    assert(I != FunctionMap.end() && "Function not in callgraph!");
 
    return I->second.get();
 
  }
 
 
 
  /// Returns the \c CallGraphNode which is used to represent
 
  /// undetermined calls into the callgraph.
 
  CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
 
 
 
  CallGraphNode *getCallsExternalNode() const {
 
    return CallsExternalNode.get();
 
  }
 
 
 
  /// Old node has been deleted, and New is to be used in its place, update the
 
  /// ExternalCallingNode.
 
  void ReplaceExternalCallEdge(CallGraphNode *Old, CallGraphNode *New);
 
 
 
  //===---------------------------------------------------------------------
 
  // Functions to keep a call graph up to date with a function that has been
 
  // modified.
 
  //
 
 
 
  /// Unlink the function from this module, returning it.
 
  ///
 
  /// Because this removes the function from the module, the call graph node is
 
  /// destroyed.  This is only valid if the function does not call any other
 
  /// functions (ie, there are no edges in it's CGN).  The easiest way to do
 
  /// this is to dropAllReferences before calling this.
 
  Function *removeFunctionFromModule(CallGraphNode *CGN);
 
 
 
  /// Similar to operator[], but this will insert a new CallGraphNode for
 
  /// \c F if one does not already exist.
 
  CallGraphNode *getOrInsertFunction(const Function *F);
 
 
 
  /// Populate \p CGN based on the calls inside the associated function.
 
  void populateCallGraphNode(CallGraphNode *CGN);
 
 
 
  /// Add a function to the call graph, and link the node to all of the
 
  /// functions that it calls.
 
  void addToCallGraph(Function *F);
 
};
 
 
 
/// A node in the call graph for a module.
 
///
 
/// Typically represents a function in the call graph. There are also special
 
/// "null" nodes used to represent theoretical entries in the call graph.
 
class CallGraphNode {
 
public:
 
  /// A pair of the calling instruction (a call or invoke)
 
  /// and the call graph node being called.
 
  /// Call graph node may have two types of call records which represent an edge
 
  /// in the call graph - reference or a call edge. Reference edges are not
 
  /// associated with any call instruction and are created with the first field
 
  /// set to `None`, while real call edges have instruction address in this
 
  /// field. Therefore, all real call edges are expected to have a value in the
 
  /// first field and it is not supposed to be `nullptr`.
 
  /// Reference edges, for example, are used for connecting broker function
 
  /// caller to the callback function for callback call sites.
 
  using CallRecord = std::pair<std::optional<WeakTrackingVH>, CallGraphNode *>;
 
 
 
public:
 
  using CalledFunctionsVector = std::vector<CallRecord>;
 
 
 
  /// Creates a node for the specified function.
 
  inline CallGraphNode(CallGraph *CG, Function *F) : CG(CG), F(F) {}
 
 
 
  CallGraphNode(const CallGraphNode &) = delete;
 
  CallGraphNode &operator=(const CallGraphNode &) = delete;
 
 
 
  ~CallGraphNode() {
 
    assert(NumReferences == 0 && "Node deleted while references remain");
 
  }
 
 
 
  using iterator = std::vector<CallRecord>::iterator;
 
  using const_iterator = std::vector<CallRecord>::const_iterator;
 
 
 
  /// Returns the function that this call graph node represents.
 
  Function *getFunction() const { return F; }
 
 
 
  inline iterator begin() { return CalledFunctions.begin(); }
 
  inline iterator end() { return CalledFunctions.end(); }
 
  inline const_iterator begin() const { return CalledFunctions.begin(); }
 
  inline const_iterator end() const { return CalledFunctions.end(); }
 
  inline bool empty() const { return CalledFunctions.empty(); }
 
  inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
 
 
 
  /// Returns the number of other CallGraphNodes in this CallGraph that
 
  /// reference this node in their callee list.
 
  unsigned getNumReferences() const { return NumReferences; }
 
 
 
  /// Returns the i'th called function.
 
  CallGraphNode *operator[](unsigned i) const {
 
    assert(i < CalledFunctions.size() && "Invalid index");
 
    return CalledFunctions[i].second;
 
  }
 
 
 
  /// Print out this call graph node.
 
  void dump() const;
 
  void print(raw_ostream &OS) const;
 
 
 
  //===---------------------------------------------------------------------
 
  // Methods to keep a call graph up to date with a function that has been
 
  // modified
 
  //
 
 
 
  /// Removes all edges from this CallGraphNode to any functions it
 
  /// calls.
 
  void removeAllCalledFunctions() {
 
    while (!CalledFunctions.empty()) {
 
      CalledFunctions.back().second->DropRef();
 
      CalledFunctions.pop_back();
 
    }
 
  }
 
 
 
  /// Moves all the callee information from N to this node.
 
  void stealCalledFunctionsFrom(CallGraphNode *N) {
 
    assert(CalledFunctions.empty() &&
 
           "Cannot steal callsite information if I already have some");
 
    std::swap(CalledFunctions, N->CalledFunctions);
 
  }
 
 
 
  /// Adds a function to the list of functions called by this one.
 
  void addCalledFunction(CallBase *Call, CallGraphNode *M) {
 
    CalledFunctions.emplace_back(Call ? std::optional<WeakTrackingVH>(Call)
 
                                      : std::optional<WeakTrackingVH>(),
 
                                 M);
 
    M->AddRef();
 
  }
 
 
 
  void removeCallEdge(iterator I) {
 
    I->second->DropRef();
 
    *I = CalledFunctions.back();
 
    CalledFunctions.pop_back();
 
  }
 
 
 
  /// Removes the edge in the node for the specified call site.
 
  ///
 
  /// Note that this method takes linear time, so it should be used sparingly.
 
  void removeCallEdgeFor(CallBase &Call);
 
 
 
  /// Removes all call edges from this node to the specified callee
 
  /// function.
 
  ///
 
  /// This takes more time to execute than removeCallEdgeTo, so it should not
 
  /// be used unless necessary.
 
  void removeAnyCallEdgeTo(CallGraphNode *Callee);
 
 
 
  /// Removes one edge associated with a null callsite from this node to
 
  /// the specified callee function.
 
  void removeOneAbstractEdgeTo(CallGraphNode *Callee);
 
 
 
  /// Replaces the edge in the node for the specified call site with a
 
  /// new one.
 
  ///
 
  /// Note that this method takes linear time, so it should be used sparingly.
 
  void replaceCallEdge(CallBase &Call, CallBase &NewCall,
 
                       CallGraphNode *NewNode);
 
 
 
private:
 
  friend class CallGraph;
 
 
 
  CallGraph *CG;
 
  Function *F;
 
 
 
  std::vector<CallRecord> CalledFunctions;
 
 
 
  /// The number of times that this CallGraphNode occurs in the
 
  /// CalledFunctions array of this or other CallGraphNodes.
 
  unsigned NumReferences = 0;
 
 
 
  void DropRef() { --NumReferences; }
 
  void AddRef() { ++NumReferences; }
 
 
 
  /// A special function that should only be used by the CallGraph class.
 
  void allReferencesDropped() { NumReferences = 0; }
 
};
 
 
 
/// An analysis pass to compute the \c CallGraph for a \c Module.
 
///
 
/// This class implements the concept of an analysis pass used by the \c
 
/// ModuleAnalysisManager to run an analysis over a module and cache the
 
/// resulting data.
 
class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> {
 
  friend AnalysisInfoMixin<CallGraphAnalysis>;
 
 
 
  static AnalysisKey Key;
 
 
 
public:
 
  /// A formulaic type to inform clients of the result type.
 
  using Result = CallGraph;
 
 
 
  /// Compute the \c CallGraph for the module \c M.
 
  ///
 
  /// The real work here is done in the \c CallGraph constructor.
 
  CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); }
 
};
 
 
 
/// Printer pass for the \c CallGraphAnalysis results.
 
class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> {
 
  raw_ostream &OS;
 
 
 
public:
 
  explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
 
 
 
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
 
};
 
 
 
/// Printer pass for the summarized \c CallGraphAnalysis results.
 
class CallGraphSCCsPrinterPass
 
    : public PassInfoMixin<CallGraphSCCsPrinterPass> {
 
  raw_ostream &OS;
 
 
 
public:
 
  explicit CallGraphSCCsPrinterPass(raw_ostream &OS) : OS(OS) {}
 
 
 
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
 
};
 
 
 
/// The \c ModulePass which wraps up a \c CallGraph and the logic to
 
/// build it.
 
///
 
/// This class exposes both the interface to the call graph container and the
 
/// module pass which runs over a module of IR and produces the call graph. The
 
/// call graph interface is entirelly a wrapper around a \c CallGraph object
 
/// which is stored internally for each module.
 
class CallGraphWrapperPass : public ModulePass {
 
  std::unique_ptr<CallGraph> G;
 
 
 
public:
 
  static char ID; // Class identification, replacement for typeinfo
 
 
 
  CallGraphWrapperPass();
 
  ~CallGraphWrapperPass() override;
 
 
 
  /// The internal \c CallGraph around which the rest of this interface
 
  /// is wrapped.
 
  const CallGraph &getCallGraph() const { return *G; }
 
  CallGraph &getCallGraph() { return *G; }
 
 
 
  using iterator = CallGraph::iterator;
 
  using const_iterator = CallGraph::const_iterator;
 
 
 
  /// Returns the module the call graph corresponds to.
 
  Module &getModule() const { return G->getModule(); }
 
 
 
  inline iterator begin() { return G->begin(); }
 
  inline iterator end() { return G->end(); }
 
  inline const_iterator begin() const { return G->begin(); }
 
  inline const_iterator end() const { return G->end(); }
 
 
 
  /// Returns the call graph node for the provided function.
 
  inline const CallGraphNode *operator[](const Function *F) const {
 
    return (*G)[F];
 
  }
 
 
 
  /// Returns the call graph node for the provided function.
 
  inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
 
 
 
  /// Returns the \c CallGraphNode which is used to represent
 
  /// undetermined calls into the callgraph.
 
  CallGraphNode *getExternalCallingNode() const {
 
    return G->getExternalCallingNode();
 
  }
 
 
 
  CallGraphNode *getCallsExternalNode() const {
 
    return G->getCallsExternalNode();
 
  }
 
 
 
  //===---------------------------------------------------------------------
 
  // Functions to keep a call graph up to date with a function that has been
 
  // modified.
 
  //
 
 
 
  /// Unlink the function from this module, returning it.
 
  ///
 
  /// Because this removes the function from the module, the call graph node is
 
  /// destroyed.  This is only valid if the function does not call any other
 
  /// functions (ie, there are no edges in it's CGN).  The easiest way to do
 
  /// this is to dropAllReferences before calling this.
 
  Function *removeFunctionFromModule(CallGraphNode *CGN) {
 
    return G->removeFunctionFromModule(CGN);
 
  }
 
 
 
  /// Similar to operator[], but this will insert a new CallGraphNode for
 
  /// \c F if one does not already exist.
 
  CallGraphNode *getOrInsertFunction(const Function *F) {
 
    return G->getOrInsertFunction(F);
 
  }
 
 
 
  //===---------------------------------------------------------------------
 
  // Implementation of the ModulePass interface needed here.
 
  //
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
  bool runOnModule(Module &M) override;
 
  void releaseMemory() override;
 
 
 
  void print(raw_ostream &o, const Module *) const override;
 
  void dump() const;
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// GraphTraits specializations for call graphs so that they can be treated as
 
// graphs by the generic graph algorithms.
 
//
 
 
 
// Provide graph traits for traversing call graphs using standard graph
 
// traversals.
 
template <> struct GraphTraits<CallGraphNode *> {
 
  using NodeRef = CallGraphNode *;
 
  using CGNPairTy = CallGraphNode::CallRecord;
 
 
 
  static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; }
 
  static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
 
 
 
  using ChildIteratorType =
 
      mapped_iterator<CallGraphNode::iterator, decltype(&CGNGetValue)>;
 
 
 
  static ChildIteratorType child_begin(NodeRef N) {
 
    return ChildIteratorType(N->begin(), &CGNGetValue);
 
  }
 
 
 
  static ChildIteratorType child_end(NodeRef N) {
 
    return ChildIteratorType(N->end(), &CGNGetValue);
 
  }
 
};
 
 
 
template <> struct GraphTraits<const CallGraphNode *> {
 
  using NodeRef = const CallGraphNode *;
 
  using CGNPairTy = CallGraphNode::CallRecord;
 
  using EdgeRef = const CallGraphNode::CallRecord &;
 
 
 
  static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; }
 
  static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
 
 
 
  using ChildIteratorType =
 
      mapped_iterator<CallGraphNode::const_iterator, decltype(&CGNGetValue)>;
 
  using ChildEdgeIteratorType = CallGraphNode::const_iterator;
 
 
 
  static ChildIteratorType child_begin(NodeRef N) {
 
    return ChildIteratorType(N->begin(), &CGNGetValue);
 
  }
 
 
 
  static ChildIteratorType child_end(NodeRef N) {
 
    return ChildIteratorType(N->end(), &CGNGetValue);
 
  }
 
 
 
  static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
 
    return N->begin();
 
  }
 
  static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
 
 
 
  static NodeRef edge_dest(EdgeRef E) { return E.second; }
 
};
 
 
 
template <>
 
struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
 
  using PairTy =
 
      std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
 
 
 
  static NodeRef getEntryNode(CallGraph *CGN) {
 
    return CGN->getExternalCallingNode(); // Start at the external node!
 
  }
 
 
 
  static CallGraphNode *CGGetValuePtr(const PairTy &P) {
 
    return P.second.get();
 
  }
 
 
 
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 
  using nodes_iterator =
 
      mapped_iterator<CallGraph::iterator, decltype(&CGGetValuePtr)>;
 
 
 
  static nodes_iterator nodes_begin(CallGraph *CG) {
 
    return nodes_iterator(CG->begin(), &CGGetValuePtr);
 
  }
 
 
 
  static nodes_iterator nodes_end(CallGraph *CG) {
 
    return nodes_iterator(CG->end(), &CGGetValuePtr);
 
  }
 
};
 
 
 
template <>
 
struct GraphTraits<const CallGraph *> : public GraphTraits<
 
                                            const CallGraphNode *> {
 
  using PairTy =
 
      std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
 
 
 
  static NodeRef getEntryNode(const CallGraph *CGN) {
 
    return CGN->getExternalCallingNode(); // Start at the external node!
 
  }
 
 
 
  static const CallGraphNode *CGGetValuePtr(const PairTy &P) {
 
    return P.second.get();
 
  }
 
 
 
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 
  using nodes_iterator =
 
      mapped_iterator<CallGraph::const_iterator, decltype(&CGGetValuePtr)>;
 
 
 
  static nodes_iterator nodes_begin(const CallGraph *CG) {
 
    return nodes_iterator(CG->begin(), &CGGetValuePtr);
 
  }
 
 
 
  static nodes_iterator nodes_end(const CallGraph *CG) {
 
    return nodes_iterator(CG->end(), &CGGetValuePtr);
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ANALYSIS_CALLGRAPH_H