//===-- CFGPrinter.h - CFG printer external interface -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a 'dot-cfg' analysis pass, which emits the
// cfg.<fnname>.dot file for each function in the program, with a graph of the
// CFG for that function.
//
// This file defines external functions that can be called to explicitly
// instantiate the CFG printer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CFGPRINTER_H
#define LLVM_ANALYSIS_CFGPRINTER_H
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/HeatUtils.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/FormatVariadic.h"
namespace llvm {
template <class GraphType> struct GraphTraits;
class CFGViewerPass : public PassInfoMixin<CFGViewerPass> {
public:
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
class CFGOnlyViewerPass : public PassInfoMixin<CFGOnlyViewerPass> {
public:
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
class CFGPrinterPass : public PassInfoMixin<CFGPrinterPass> {
public:
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
class CFGOnlyPrinterPass : public PassInfoMixin<CFGOnlyPrinterPass> {
public:
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
class DOTFuncInfo {
private:
const Function *F;
const BlockFrequencyInfo *BFI;
const BranchProbabilityInfo *BPI;
uint64_t MaxFreq;
bool ShowHeat;
bool EdgeWeights;
bool RawWeights;
public:
DOTFuncInfo(const Function *F) : DOTFuncInfo(F, nullptr, nullptr, 0) {}
DOTFuncInfo(const Function *F, const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI, uint64_t MaxFreq)
: F(F), BFI(BFI), BPI(BPI), MaxFreq(MaxFreq) {
ShowHeat = false;
EdgeWeights = !!BPI; // Print EdgeWeights when BPI is available.
RawWeights = !!BFI; // Print RawWeights when BFI is available.
}
const BlockFrequencyInfo *getBFI() const { return BFI; }
const BranchProbabilityInfo *getBPI() const { return BPI; }
const Function *getFunction() const { return this->F; }
uint64_t getMaxFreq() const { return MaxFreq; }
uint64_t getFreq(const BasicBlock *BB) const {
return BFI->getBlockFreq(BB).getFrequency();
}
void setHeatColors(bool ShowHeat) { this->ShowHeat = ShowHeat; }
bool showHeatColors() { return ShowHeat; }
void setRawEdgeWeights(bool RawWeights) { this->RawWeights = RawWeights; }
bool useRawEdgeWeights() { return RawWeights; }
void setEdgeWeights(bool EdgeWeights) { this->EdgeWeights = EdgeWeights; }
bool showEdgeWeights() { return EdgeWeights; }
};
template <>
struct GraphTraits<DOTFuncInfo *> : public GraphTraits<const BasicBlock *> {
static NodeRef getEntryNode(DOTFuncInfo *CFGInfo) {
return &(CFGInfo->getFunction()->getEntryBlock());
}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<Function::const_iterator>;
static nodes_iterator nodes_begin(DOTFuncInfo *CFGInfo) {
return nodes_iterator(CFGInfo->getFunction()->begin());
}
static nodes_iterator nodes_end(DOTFuncInfo *CFGInfo) {
return nodes_iterator(CFGInfo->getFunction()->end());
}
static size_t size(DOTFuncInfo *CFGInfo) {
return CFGInfo->getFunction()->size();
}
};
template <typename BasicBlockT>
std::string SimpleNodeLabelString(const BasicBlockT *Node) {
if (!Node->getName().empty())
return Node->getName().str();
std::string Str;
raw_string_ostream OS(Str);
Node->printAsOperand(OS, false);
return OS.str();
}
template <typename BasicBlockT>
std::string CompleteNodeLabelString(
const BasicBlockT *Node,
function_ref<void(raw_string_ostream &, const BasicBlockT &)>
HandleBasicBlock,
function_ref<void(std::string &, unsigned &, unsigned)>
HandleComment) {
enum { MaxColumns = 80 };
std::string Str;
raw_string_ostream OS(Str);
if (Node->getName().empty()) {
Node->printAsOperand(OS, false);
OS << ':';
}
HandleBasicBlock(OS, *Node);
std::string OutStr = OS.str();
if (OutStr[0] == '\n')
OutStr.erase(OutStr.begin());
unsigned ColNum = 0;
unsigned LastSpace = 0;
for (unsigned i = 0; i != OutStr.length(); ++i) {
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin() + i + 1, 'l');
ColNum = 0;
LastSpace = 0;
} else if (OutStr[i] == ';') { // Delete comments!
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
HandleComment(OutStr, i, Idx);
} else if (ColNum == MaxColumns) { // Wrap lines.
// Wrap very long names even though we can't find a space.
if (!LastSpace)
LastSpace = i;
OutStr.insert(LastSpace, "\\l...");
ColNum = i - LastSpace;
LastSpace = 0;
i += 3; // The loop will advance 'i' again.
} else
++ColNum;
if (OutStr[i] == ' ')
LastSpace = i;
}
return OutStr;
}
template <>
struct DOTGraphTraits<DOTFuncInfo *> : public DefaultDOTGraphTraits {
// Cache for is hidden property
DenseMap<const BasicBlock *, bool> isOnDeoptOrUnreachablePath;
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static void eraseComment(std::string &OutStr, unsigned &I, unsigned Idx) {
OutStr.erase(OutStr.begin() + I, OutStr.begin() + Idx);
--I;
}
static std::string getGraphName(DOTFuncInfo *CFGInfo) {
return "CFG for '" + CFGInfo->getFunction()->getName().str() + "' function";
}
static std::string getSimpleNodeLabel(const BasicBlock *Node, DOTFuncInfo *) {
return SimpleNodeLabelString(Node);
}
static std::string getCompleteNodeLabel(
const BasicBlock *Node, DOTFuncInfo *,
function_ref<void(raw_string_ostream &, const BasicBlock &)>
HandleBasicBlock = [](raw_string_ostream &OS,
const BasicBlock &Node) -> void { OS << Node; },
function_ref<void(std::string &, unsigned &, unsigned)>
HandleComment = eraseComment) {
return CompleteNodeLabelString(Node, HandleBasicBlock, HandleComment);
}
std::string getNodeLabel(const BasicBlock *Node, DOTFuncInfo *CFGInfo) {
if (isSimple())
return getSimpleNodeLabel(Node, CFGInfo);
else
return getCompleteNodeLabel(Node, CFGInfo);
}
static std::string getEdgeSourceLabel(const BasicBlock *Node,
const_succ_iterator I) {
// Label source of conditional branches with "T" or "F"
if (const BranchInst *BI = dyn_cast<BranchInst>(Node->getTerminator()))
if (BI->isConditional())
return (I == succ_begin(Node)) ? "T" : "F";
// Label source of switch edges with the associated value.
if (const SwitchInst *SI = dyn_cast<SwitchInst>(Node->getTerminator())) {
unsigned SuccNo = I.getSuccessorIndex();
if (SuccNo == 0)
return "def";
std::string Str;
raw_string_ostream OS(Str);
auto Case = *SwitchInst::ConstCaseIt::fromSuccessorIndex(SI, SuccNo);
OS << Case.getCaseValue()->getValue();
return OS.str();
}
return "";
}
/// Display the raw branch weights from PGO.
std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
DOTFuncInfo *CFGInfo) {
if (!CFGInfo->showEdgeWeights())
return "";
const Instruction *TI = Node->getTerminator();
if (TI->getNumSuccessors() == 1)
return "penwidth=2";
unsigned OpNo = I.getSuccessorIndex();
if (OpNo >= TI->getNumSuccessors())
return "";
BasicBlock *SuccBB = TI->getSuccessor(OpNo);
auto BranchProb = CFGInfo->getBPI()->getEdgeProbability(Node, SuccBB);
double WeightPercent = ((double)BranchProb.getNumerator()) /
((double)BranchProb.getDenominator());
double Width = 1 + WeightPercent;
if (!CFGInfo->useRawEdgeWeights())
return formatv("label=\"{0:P}\" penwidth={1}", WeightPercent, Width)
.str();
// Prepend a 'W' to indicate that this is a weight rather than the actual
// profile count (due to scaling).
uint64_t Freq = CFGInfo->getFreq(Node);
std::string Attrs = formatv("label=\"W:{0}\" penwidth={1}",
(uint64_t)(Freq * WeightPercent), Width);
if (Attrs.size())
return Attrs;
MDNode *WeightsNode = getBranchWeightMDNode(*TI);
if (!WeightsNode)
return "";
OpNo = I.getSuccessorIndex() + 1;
if (OpNo >= WeightsNode->getNumOperands())
return "";
ConstantInt *Weight =
mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(OpNo));
if (!Weight)
return "";
return ("label=\"W:" + std::to_string(Weight->getZExtValue()) +
"\" penwidth=" + std::to_string(Width));
}
std::string getNodeAttributes(const BasicBlock *Node, DOTFuncInfo *CFGInfo) {
if (!CFGInfo->showHeatColors())
return "";
uint64_t Freq = CFGInfo->getFreq(Node);
std::string Color = getHeatColor(Freq, CFGInfo->getMaxFreq());
std::string EdgeColor = (Freq <= (CFGInfo->getMaxFreq() / 2))
? (getHeatColor(0))
: (getHeatColor(1));
std::string Attrs = "color=\"" + EdgeColor + "ff\", style=filled," +
" fillcolor=\"" + Color + "70\"";
return Attrs;
}
bool isNodeHidden(const BasicBlock *Node, const DOTFuncInfo *CFGInfo);
void computeDeoptOrUnreachablePaths(const Function *F);
};
} // End llvm namespace
namespace llvm {
class FunctionPass;
FunctionPass *createCFGPrinterLegacyPassPass();
FunctionPass *createCFGOnlyPrinterLegacyPassPass();
} // End llvm namespace
#endif