Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This family of functions performs analyses on basic blocks, and instructions
  10. // contained within basic blocks.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_ANALYSIS_CFG_H
  15. #define LLVM_ANALYSIS_CFG_H
  16.  
  17. #include "llvm/ADT/GraphTraits.h"
  18. #include "llvm/ADT/SmallPtrSet.h"
  19. #include <utility>
  20.  
  21. namespace llvm {
  22.  
  23. class BasicBlock;
  24. class DominatorTree;
  25. class Function;
  26. class Instruction;
  27. class LoopInfo;
  28. template <typename T> class SmallVectorImpl;
  29.  
  30. /// Analyze the specified function to find all of the loop backedges in the
  31. /// function and return them.  This is a relatively cheap (compared to
  32. /// computing dominators and loop info) analysis.
  33. ///
  34. /// The output is added to Result, as pairs of <from,to> edge info.
  35. void FindFunctionBackedges(
  36.     const Function &F,
  37.     SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
  38.         Result);
  39.  
  40. /// Search for the specified successor of basic block BB and return its position
  41. /// in the terminator instruction's list of successors.  It is an error to call
  42. /// this with a block that is not a successor.
  43. unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ);
  44.  
  45. /// Return true if the specified edge is a critical edge. Critical edges are
  46. /// edges from a block with multiple successors to a block with multiple
  47. /// predecessors.
  48. ///
  49. bool isCriticalEdge(const Instruction *TI, unsigned SuccNum,
  50.                     bool AllowIdenticalEdges = false);
  51. bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ,
  52.                     bool AllowIdenticalEdges = false);
  53.  
  54. /// Determine whether instruction 'To' is reachable from 'From', without passing
  55. /// through any blocks in ExclusionSet, returning true if uncertain.
  56. ///
  57. /// Determine whether there is a path from From to To within a single function.
  58. /// Returns false only if we can prove that once 'From' has been executed then
  59. /// 'To' can not be executed. Conservatively returns true.
  60. ///
  61. /// This function is linear with respect to the number of blocks in the CFG,
  62. /// walking down successors from From to reach To, with a fixed threshold.
  63. /// Using DT or LI allows us to answer more quickly. LI reduces the cost of
  64. /// an entire loop of any number of blocks to be the same as the cost of a
  65. /// single block. DT reduces the cost by allowing the search to terminate when
  66. /// we find a block that dominates the block containing 'To'. DT is most useful
  67. /// on branchy code but not loops, and LI is most useful on code with loops but
  68. /// does not help on branchy code outside loops.
  69. bool isPotentiallyReachable(
  70.     const Instruction *From, const Instruction *To,
  71.     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
  72.     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
  73.  
  74. /// Determine whether block 'To' is reachable from 'From', returning
  75. /// true if uncertain.
  76. ///
  77. /// Determine whether there is a path from From to To within a single function.
  78. /// Returns false only if we can prove that once 'From' has been reached then
  79. /// 'To' can not be executed. Conservatively returns true.
  80. bool isPotentiallyReachable(
  81.     const BasicBlock *From, const BasicBlock *To,
  82.     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr,
  83.     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
  84.  
  85. /// Determine whether there is at least one path from a block in
  86. /// 'Worklist' to 'StopBB' without passing through any blocks in
  87. /// 'ExclusionSet', returning true if uncertain.
  88. ///
  89. /// Determine whether there is a path from at least one block in Worklist to
  90. /// StopBB within a single function without passing through any of the blocks
  91. /// in 'ExclusionSet'. Returns false only if we can prove that once any block
  92. /// in 'Worklist' has been reached then 'StopBB' can not be executed.
  93. /// Conservatively returns true.
  94. bool isPotentiallyReachableFromMany(
  95.     SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
  96.     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
  97.     const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr);
  98.  
  99. /// Return true if the control flow in \p RPOTraversal is irreducible.
  100. ///
  101. /// This is a generic implementation to detect CFG irreducibility based on loop
  102. /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop,
  103. /// Function, MachineFunction, etc.) by providing an RPO traversal (\p
  104. /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility
  105. /// function is only recommended when loop info analysis is available. If loop
  106. /// info analysis isn't available, please, don't compute it explicitly for this
  107. /// purpose. There are more efficient ways to detect CFG irreducibility that
  108. /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's
  109. /// algorithm).
  110. ///
  111. /// Requirements:
  112. ///   1) GraphTraits must be implemented for NodeT type. It is used to access
  113. ///      NodeT successors.
  114. //    2) \p RPOTraversal must be a valid reverse post-order traversal of the
  115. ///      target CFG with begin()/end() iterator interfaces.
  116. ///   3) \p LI must be a valid LoopInfoBase that contains up-to-date loop
  117. ///      analysis information of the CFG.
  118. ///
  119. /// This algorithm uses the information about reducible loop back-edges already
  120. /// computed in \p LI. When a back-edge is found during the RPO traversal, the
  121. /// algorithm checks whether the back-edge is one of the reducible back-edges in
  122. /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG
  123. /// below (canonical irreducible graph) loop info won't contain any loop, so the
  124. /// algorithm will return that the CFG is irreducible when checking the B <-
  125. /// -> C back-edge.
  126. ///
  127. /// (A->B, A->C, B->C, C->B, C->D)
  128. ///    A
  129. ///  /   \
  130. /// B<- ->C
  131. ///       |
  132. ///       D
  133. ///
  134. template <class NodeT, class RPOTraversalT, class LoopInfoT,
  135.           class GT = GraphTraits<NodeT>>
  136. bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) {
  137.   /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge
  138.   /// according to LI. I.e., check if there exists a loop that contains Src and
  139.   /// where Dst is the loop header.
  140.   auto isProperBackedge = [&](NodeT Src, NodeT Dst) {
  141.     for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) {
  142.       if (Lp->getHeader() == Dst)
  143.         return true;
  144.     }
  145.     return false;
  146.   };
  147.  
  148.   SmallPtrSet<NodeT, 32> Visited;
  149.   for (NodeT Node : RPOTraversal) {
  150.     Visited.insert(Node);
  151.     for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) {
  152.       // Succ hasn't been visited yet
  153.       if (!Visited.count(Succ))
  154.         continue;
  155.       // We already visited Succ, thus Node->Succ must be a backedge. Check that
  156.       // the head matches what we have in the loop information. Otherwise, we
  157.       // have an irreducible graph.
  158.       if (!isProperBackedge(Node, Succ))
  159.         return true;
  160.     }
  161.   }
  162.  
  163.   return false;
  164. }
  165. } // End llvm namespace
  166.  
  167. #endif
  168.