- //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This pass is used to evaluate branch probabilties. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 
- #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 
-   
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/DenseMapInfo.h" 
- #include "llvm/ADT/DenseSet.h" 
- #include "llvm/IR/BasicBlock.h" 
- #include "llvm/IR/CFG.h" 
- #include "llvm/IR/PassManager.h" 
- #include "llvm/IR/ValueHandle.h" 
- #include "llvm/Pass.h" 
- #include "llvm/Support/BranchProbability.h" 
- #include <algorithm> 
- #include <cassert> 
- #include <cstdint> 
- #include <memory> 
- #include <utility> 
-   
- namespace llvm { 
-   
- class Function; 
- class Loop; 
- class LoopInfo; 
- class raw_ostream; 
- class DominatorTree; 
- class PostDominatorTree; 
- class TargetLibraryInfo; 
- class Value; 
-   
- /// Analysis providing branch probability information. 
- /// 
- /// This is a function analysis which provides information on the relative 
- /// probabilities of each "edge" in the function's CFG where such an edge is 
- /// defined by a pair (PredBlock and an index in the successors). The 
- /// probability of an edge from one block is always relative to the 
- /// probabilities of other edges from the block. The probabilites of all edges 
- /// from a block sum to exactly one (100%). 
- /// We use a pair (PredBlock and an index in the successors) to uniquely 
- /// identify an edge, since we can have multiple edges from Src to Dst. 
- /// As an example, we can have a switch which jumps to Dst with value 0 and 
- /// value 10. 
- /// 
- /// Process of computing branch probabilities can be logically viewed as three 
- /// step process: 
- /// 
- ///   First, if there is a profile information associated with the branch then 
- /// it is trivially translated to branch probabilities. There is one exception 
- /// from this rule though. Probabilities for edges leading to "unreachable" 
- /// blocks (blocks with the estimated weight not greater than 
- /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and 
- /// override profile information. If no branch probabilities were calculated 
- /// on this step then take the next one. 
- /// 
- ///   Second, estimate absolute execution weights for each block based on 
- /// statically known information. Roots of such information are "cold", 
- /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their 
- /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE, 
- /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the 
- /// weights are propagated to the other blocks up the domination line. In 
- /// addition, if all successors have estimated weights set then maximum of these 
- /// weights assigned to the block itself (while this is not ideal heuristic in 
- /// theory it's simple and works reasonably well in most cases) and the process 
- /// repeats. Once the process of weights propagation converges branch 
- /// probabilities are set for all such branches that have at least one successor 
- /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is 
- /// used for any successors which doesn't have its weight set. For loop back 
- /// branches we use their weights scaled by loop trip count equal to 
- /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'. 
- /// 
- /// Here is a simple example demonstrating how the described algorithm works. 
- /// 
- ///          BB1 
- ///         /   \ 
- ///        v     v 
- ///      BB2     BB3 
- ///     /   \ 
- ///    v     v 
- ///  ColdBB  UnreachBB 
- /// 
- /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with 
- /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its 
- /// successors. BB1 and BB3 has no explicit estimated weights and assumed to 
- /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the 
- /// following probabilities: 
- /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) = 
- ///   0xffff / (0xffff + 0xfffff) = 0.0588(5.9%) 
- /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) = 
- ///          0xfffff / (0xffff + 0xfffff) = 0.941(94.1%) 
- /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%) 
- /// P(BB2->UnreachBB) = 
- ///   UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%) 
- /// 
- /// If no branch probabilities were calculated on this step then take the next 
- /// one. 
- /// 
- ///   Third, apply different kinds of local heuristics for each individual 
- /// branch until first match. For example probability of a pointer to be null is 
- /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If 
- /// no local heuristic has been matched then branch is left with no explicit 
- /// probability set and assumed to have default probability. 
- class BranchProbabilityInfo { 
- public: 
-   BranchProbabilityInfo() = default; 
-   
-   BranchProbabilityInfo(const Function &F, const LoopInfo &LI, 
-                         const TargetLibraryInfo *TLI = nullptr, 
-                         DominatorTree *DT = nullptr, 
-                         PostDominatorTree *PDT = nullptr) { 
-     calculate(F, LI, TLI, DT, PDT); 
-   } 
-   
-   BranchProbabilityInfo(BranchProbabilityInfo &&Arg) 
-       : Probs(std::move(Arg.Probs)), LastF(Arg.LastF), 
-         EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {} 
-   
-   BranchProbabilityInfo(const BranchProbabilityInfo &) = delete; 
-   BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete; 
-   
-   BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) { 
-     releaseMemory(); 
-     Probs = std::move(RHS.Probs); 
-     EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight); 
-     return *this; 
-   } 
-   
-   bool invalidate(Function &, const PreservedAnalyses &PA, 
-                   FunctionAnalysisManager::Invalidator &); 
-   
-   void releaseMemory(); 
-   
-   void print(raw_ostream &OS) const; 
-   
-   /// Get an edge's probability, relative to other out-edges of the Src. 
-   /// 
-   /// This routine provides access to the fractional probability between zero 
-   /// (0%) and one (100%) of this edge executing, relative to other edges 
-   /// leaving the 'Src' block. The returned probability is never zero, and can 
-   /// only be one if the source block has only one successor. 
-   BranchProbability getEdgeProbability(const BasicBlock *Src, 
-                                        unsigned IndexInSuccessors) const; 
-   
-   /// Get the probability of going from Src to Dst. 
-   /// 
-   /// It returns the sum of all probabilities for edges from Src to Dst. 
-   BranchProbability getEdgeProbability(const BasicBlock *Src, 
-                                        const BasicBlock *Dst) const; 
-   
-   BranchProbability getEdgeProbability(const BasicBlock *Src, 
-                                        const_succ_iterator Dst) const; 
-   
-   /// Test if an edge is hot relative to other out-edges of the Src. 
-   /// 
-   /// Check whether this edge out of the source block is 'hot'. We define hot 
-   /// as having a relative probability >= 80%. 
-   bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const; 
-   
-   /// Print an edge's probability. 
-   /// 
-   /// Retrieves an edge's probability similarly to \see getEdgeProbability, but 
-   /// then prints that probability to the provided stream. That stream is then 
-   /// returned. 
-   raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src, 
-                                     const BasicBlock *Dst) const; 
-   
- public: 
-   /// Set the raw probabilities for all edges from the given block. 
-   /// 
-   /// This allows a pass to explicitly set edge probabilities for a block. It 
-   /// can be used when updating the CFG to update the branch probability 
-   /// information. 
-   void setEdgeProbability(const BasicBlock *Src, 
-                           const SmallVectorImpl<BranchProbability> &Probs); 
-   
-   /// Copy outgoing edge probabilities from \p Src to \p Dst. 
-   /// 
-   /// This allows to keep probabilities unset for the destination if they were 
-   /// unset for source. 
-   void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst); 
-   
-   static BranchProbability getBranchProbStackProtector(bool IsLikely) { 
-     static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20); 
-     return IsLikely ? LikelyProb : LikelyProb.getCompl(); 
-   } 
-   
-   void calculate(const Function &F, const LoopInfo &LI, 
-                  const TargetLibraryInfo *TLI, DominatorTree *DT, 
-                  PostDominatorTree *PDT); 
-   
-   /// Forget analysis results for the given basic block. 
-   void eraseBlock(const BasicBlock *BB); 
-   
-   // Data structure to track SCCs for handling irreducible loops. 
-   class SccInfo { 
-     // Enum of types to classify basic blocks in SCC. Basic block belonging to 
-     // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a 
-     // basic block can be 'Header' and 'Exiting' at the same time. 
-     enum SccBlockType { 
-       Inner = 0x0, 
-       Header = 0x1, 
-       Exiting = 0x2, 
-     }; 
-     // Map of basic blocks to SCC IDs they belong to. If basic block doesn't 
-     // belong to any SCC it is not in the map. 
-     using SccMap = DenseMap<const BasicBlock *, int>; 
-     // Each basic block in SCC is attributed with one or several types from 
-     // SccBlockType. Map value has uint32_t type (instead of SccBlockType) 
-     // since basic block may be for example "Header" and "Exiting" at the same 
-     // time and we need to be able to keep more than one value from 
-     // SccBlockType. 
-     using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>; 
-     // Vector containing classification of basic blocks for all  SCCs where i'th 
-     // vector element corresponds to SCC with ID equal to i. 
-     using SccBlockTypeMaps = std::vector<SccBlockTypeMap>; 
-   
-     SccMap SccNums; 
-     SccBlockTypeMaps SccBlocks; 
-   
-   public: 
-     explicit SccInfo(const Function &F); 
-   
-     /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise 
-     /// -1 is returned. If \p BB belongs to more than one SCC at the same time 
-     /// result is undefined. 
-     int getSCCNum(const BasicBlock *BB) const; 
-     /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID, 
-     /// false otherwise. 
-     bool isSCCHeader(const BasicBlock *BB, int SccNum) const { 
-       return getSccBlockType(BB, SccNum) & Header; 
-     } 
-     /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID, 
-     /// false otherwise. 
-     bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const { 
-       return getSccBlockType(BB, SccNum) & Exiting; 
-     } 
-     /// Fills in \p Enters vector with all such blocks that don't belong to 
-     /// SCC with \p SccNum ID but there is an edge to a block belonging to the 
-     /// SCC. 
-     void getSccEnterBlocks(int SccNum, 
-                            SmallVectorImpl<BasicBlock *> &Enters) const; 
-     /// Fills in \p Exits vector with all such blocks that don't belong to 
-     /// SCC with \p SccNum ID but there is an edge from a block belonging to the 
-     /// SCC. 
-     void getSccExitBlocks(int SccNum, 
-                           SmallVectorImpl<BasicBlock *> &Exits) const; 
-   
-   private: 
-     /// Returns \p BB's type according to classification given by SccBlockType 
-     /// enum. Please note that \p BB must belong to SSC with \p SccNum ID. 
-     uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const; 
-     /// Calculates \p BB's type and stores it in internal data structures for 
-     /// future use. Please note that \p BB must belong to SSC with \p SccNum ID. 
-     void calculateSccBlockType(const BasicBlock *BB, int SccNum); 
-   }; 
-   
- private: 
-   // We need to store CallbackVH's in order to correctly handle basic block 
-   // removal. 
-   class BasicBlockCallbackVH final : public CallbackVH { 
-     BranchProbabilityInfo *BPI; 
-   
-     void deleted() override { 
-       assert(BPI != nullptr); 
-       BPI->eraseBlock(cast<BasicBlock>(getValPtr())); 
-     } 
-   
-   public: 
-     BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr) 
-         : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {} 
-   }; 
-   
-   /// Pair of Loop and SCC ID number. Used to unify handling of normal and 
-   /// SCC based loop representations. 
-   using LoopData = std::pair<Loop *, int>; 
-   /// Helper class to keep basic block along with its loop data information. 
-   class LoopBlock { 
-   public: 
-     explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI, 
-                        const SccInfo &SccI); 
-   
-     const BasicBlock *getBlock() const { return BB; } 
-     BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); } 
-     LoopData getLoopData() const { return LD; } 
-     Loop *getLoop() const { return LD.first; } 
-     int getSccNum() const { return LD.second; } 
-   
-     bool belongsToLoop() const { return getLoop() || getSccNum() != -1; } 
-     bool belongsToSameLoop(const LoopBlock &LB) const { 
-       return (LB.getLoop() && getLoop() == LB.getLoop()) || 
-              (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum()); 
-     } 
-   
-   private: 
-     const BasicBlock *const BB = nullptr; 
-     LoopData LD = {nullptr, -1}; 
-   }; 
-   
-   // Pair of LoopBlocks representing an edge from first to second block. 
-   using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>; 
-   
-   DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles; 
-   
-   // Since we allow duplicate edges from one basic block to another, we use 
-   // a pair (PredBlock and an index in the successors) to specify an edge. 
-   using Edge = std::pair<const BasicBlock *, unsigned>; 
-   
-   DenseMap<Edge, BranchProbability> Probs; 
-   
-   /// Track the last function we run over for printing. 
-   const Function *LastF = nullptr; 
-   
-   const LoopInfo *LI = nullptr; 
-   
-   /// Keeps information about all SCCs in a function. 
-   std::unique_ptr<const SccInfo> SccI; 
-   
-   /// Keeps mapping of a basic block to its estimated weight. 
-   SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight; 
-   
-   /// Keeps mapping of a loop to estimated weight to enter the loop. 
-   SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight; 
-   
-   /// Helper to construct LoopBlock for \p BB. 
-   LoopBlock getLoopBlock(const BasicBlock *BB) const { 
-     return LoopBlock(BB, *LI, *SccI.get()); 
-   } 
-   
-   /// Returns true if destination block belongs to some loop and source block is 
-   /// either doesn't belong to any loop or belongs to a loop which is not inner 
-   /// relative to the destination block. 
-   bool isLoopEnteringEdge(const LoopEdge &Edge) const; 
-   /// Returns true if source block belongs to some loop and destination block is 
-   /// either doesn't belong to any loop or belongs to a loop which is not inner 
-   /// relative to the source block. 
-   bool isLoopExitingEdge(const LoopEdge &Edge) const; 
-   /// Returns true if \p Edge is either enters to or exits from some loop, false 
-   /// in all other cases. 
-   bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const; 
-   /// Returns true if source and destination blocks belongs to the same loop and 
-   /// destination block is loop header. 
-   bool isLoopBackEdge(const LoopEdge &Edge) const; 
-   // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to. 
-   void getLoopEnterBlocks(const LoopBlock &LB, 
-                           SmallVectorImpl<BasicBlock *> &Enters) const; 
-   // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to. 
-   void getLoopExitBlocks(const LoopBlock &LB, 
-                          SmallVectorImpl<BasicBlock *> &Exits) const; 
-   
-   /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated 
-   /// weight. 
-   std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const; 
-   
-   /// Returns estimated weight to enter \p L. In other words it is weight of 
-   /// loop's header block not scaled by trip count. Returns std::nullopt if \p L 
-   /// has no no estimated weight. 
-   std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const; 
-   
-   /// Return estimated weight for \p Edge. Returns std::nullopt if estimated 
-   /// weight is unknown. 
-   std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const; 
-   
-   /// Iterates over all edges leading from \p SrcBB to \p Successors and 
-   /// returns maximum of all estimated weights. If at least one edge has unknown 
-   /// estimated weight std::nullopt is returned. 
-   template <class IterT> 
-   std::optional<uint32_t> 
-   getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB, 
-                             iterator_range<IterT> Successors) const; 
-   
-   /// If \p LoopBB has no estimated weight then set it to \p BBWeight and 
-   /// return true. Otherwise \p BB's weight remains unchanged and false is 
-   /// returned. In addition all blocks/loops that might need their weight to be 
-   /// re-estimated are put into BlockWorkList/LoopWorkList. 
-   bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight, 
-                                   SmallVectorImpl<BasicBlock *> &BlockWorkList, 
-                                   SmallVectorImpl<LoopBlock> &LoopWorkList); 
-   
-   /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight 
-   /// up the domination tree. 
-   void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT, 
-                                      PostDominatorTree *PDT, uint32_t BBWeight, 
-                                      SmallVectorImpl<BasicBlock *> &WorkList, 
-                                      SmallVectorImpl<LoopBlock> &LoopWorkList); 
-   
-   /// Returns block's weight encoded in the IR. 
-   std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB); 
-   
-   // Computes estimated weights for all blocks in \p F. 
-   void computeEestimateBlockWeight(const Function &F, DominatorTree *DT, 
-                                    PostDominatorTree *PDT); 
-   
-   /// Based on computed weights by \p computeEstimatedBlockWeight set 
-   /// probabilities on branches. 
-   bool calcEstimatedHeuristics(const BasicBlock *BB); 
-   bool calcMetadataWeights(const BasicBlock *BB); 
-   bool calcPointerHeuristics(const BasicBlock *BB); 
-   bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI); 
-   bool calcFloatingPointHeuristics(const BasicBlock *BB); 
- }; 
-   
- /// Analysis pass which computes \c BranchProbabilityInfo. 
- class BranchProbabilityAnalysis 
-     : public AnalysisInfoMixin<BranchProbabilityAnalysis> { 
-   friend AnalysisInfoMixin<BranchProbabilityAnalysis>; 
-   
-   static AnalysisKey Key; 
-   
- public: 
-   /// Provide the result type for this analysis pass. 
-   using Result = BranchProbabilityInfo; 
-   
-   /// Run the analysis pass over a function and produce BPI. 
-   BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// Printer pass for the \c BranchProbabilityAnalysis results. 
- class BranchProbabilityPrinterPass 
-     : public PassInfoMixin<BranchProbabilityPrinterPass> { 
-   raw_ostream &OS; 
-   
- public: 
-   explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {} 
-   
-   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// Legacy analysis pass which computes \c BranchProbabilityInfo. 
- class BranchProbabilityInfoWrapperPass : public FunctionPass { 
-   BranchProbabilityInfo BPI; 
-   
- public: 
-   static char ID; 
-   
-   BranchProbabilityInfoWrapperPass(); 
-   
-   BranchProbabilityInfo &getBPI() { return BPI; } 
-   const BranchProbabilityInfo &getBPI() const { return BPI; } 
-   
-   void getAnalysisUsage(AnalysisUsage &AU) const override; 
-   bool runOnFunction(Function &F) override; 
-   void releaseMemory() override; 
-   void print(raw_ostream &OS, const Module *M = nullptr) const override; 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 
-