Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This pass is used to evaluate branch probabilties.
  10. //
  11. //===----------------------------------------------------------------------===//
  12.  
  13. #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
  14. #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
  15.  
  16. #include "llvm/ADT/DenseMap.h"
  17. #include "llvm/ADT/DenseMapInfo.h"
  18. #include "llvm/ADT/DenseSet.h"
  19. #include "llvm/IR/BasicBlock.h"
  20. #include "llvm/IR/CFG.h"
  21. #include "llvm/IR/PassManager.h"
  22. #include "llvm/IR/ValueHandle.h"
  23. #include "llvm/Pass.h"
  24. #include "llvm/Support/BranchProbability.h"
  25. #include <algorithm>
  26. #include <cassert>
  27. #include <cstdint>
  28. #include <memory>
  29. #include <utility>
  30.  
  31. namespace llvm {
  32.  
  33. class Function;
  34. class Loop;
  35. class LoopInfo;
  36. class raw_ostream;
  37. class DominatorTree;
  38. class PostDominatorTree;
  39. class TargetLibraryInfo;
  40. class Value;
  41.  
  42. /// Analysis providing branch probability information.
  43. ///
  44. /// This is a function analysis which provides information on the relative
  45. /// probabilities of each "edge" in the function's CFG where such an edge is
  46. /// defined by a pair (PredBlock and an index in the successors). The
  47. /// probability of an edge from one block is always relative to the
  48. /// probabilities of other edges from the block. The probabilites of all edges
  49. /// from a block sum to exactly one (100%).
  50. /// We use a pair (PredBlock and an index in the successors) to uniquely
  51. /// identify an edge, since we can have multiple edges from Src to Dst.
  52. /// As an example, we can have a switch which jumps to Dst with value 0 and
  53. /// value 10.
  54. ///
  55. /// Process of computing branch probabilities can be logically viewed as three
  56. /// step process:
  57. ///
  58. ///   First, if there is a profile information associated with the branch then
  59. /// it is trivially translated to branch probabilities. There is one exception
  60. /// from this rule though. Probabilities for edges leading to "unreachable"
  61. /// blocks (blocks with the estimated weight not greater than
  62. /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
  63. /// override profile information. If no branch probabilities were calculated
  64. /// on this step then take the next one.
  65. ///
  66. ///   Second, estimate absolute execution weights for each block based on
  67. /// statically known information. Roots of such information are "cold",
  68. /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
  69. /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
  70. /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
  71. /// weights are propagated to the other blocks up the domination line. In
  72. /// addition, if all successors have estimated weights set then maximum of these
  73. /// weights assigned to the block itself (while this is not ideal heuristic in
  74. /// theory it's simple and works reasonably well in most cases) and the process
  75. /// repeats. Once the process of weights propagation converges branch
  76. /// probabilities are set for all such branches that have at least one successor
  77. /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
  78. /// used for any successors which doesn't have its weight set. For loop back
  79. /// branches we use their weights scaled by loop trip count equal to
  80. /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
  81. ///
  82. /// Here is a simple example demonstrating how the described algorithm works.
  83. ///
  84. ///          BB1
  85. ///         /   \
  86. ///        v     v
  87. ///      BB2     BB3
  88. ///     /   \
  89. ///    v     v
  90. ///  ColdBB  UnreachBB
  91. ///
  92. /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
  93. /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
  94. /// successors. BB1 and BB3 has no explicit estimated weights and assumed to
  95. /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
  96. /// following probabilities:
  97. /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
  98. ///   0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
  99. /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
  100. ///          0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
  101. /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
  102. /// P(BB2->UnreachBB) =
  103. ///   UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
  104. ///
  105. /// If no branch probabilities were calculated on this step then take the next
  106. /// one.
  107. ///
  108. ///   Third, apply different kinds of local heuristics for each individual
  109. /// branch until first match. For example probability of a pointer to be null is
  110. /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
  111. /// no local heuristic has been matched then branch is left with no explicit
  112. /// probability set and assumed to have default probability.
  113. class BranchProbabilityInfo {
  114. public:
  115.   BranchProbabilityInfo() = default;
  116.  
  117.   BranchProbabilityInfo(const Function &F, const LoopInfo &LI,
  118.                         const TargetLibraryInfo *TLI = nullptr,
  119.                         DominatorTree *DT = nullptr,
  120.                         PostDominatorTree *PDT = nullptr) {
  121.     calculate(F, LI, TLI, DT, PDT);
  122.   }
  123.  
  124.   BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
  125.       : Probs(std::move(Arg.Probs)), LastF(Arg.LastF),
  126.         EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {}
  127.  
  128.   BranchProbabilityInfo(const BranchProbabilityInfo &) = delete;
  129.   BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete;
  130.  
  131.   BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) {
  132.     releaseMemory();
  133.     Probs = std::move(RHS.Probs);
  134.     EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
  135.     return *this;
  136.   }
  137.  
  138.   bool invalidate(Function &, const PreservedAnalyses &PA,
  139.                   FunctionAnalysisManager::Invalidator &);
  140.  
  141.   void releaseMemory();
  142.  
  143.   void print(raw_ostream &OS) const;
  144.  
  145.   /// Get an edge's probability, relative to other out-edges of the Src.
  146.   ///
  147.   /// This routine provides access to the fractional probability between zero
  148.   /// (0%) and one (100%) of this edge executing, relative to other edges
  149.   /// leaving the 'Src' block. The returned probability is never zero, and can
  150.   /// only be one if the source block has only one successor.
  151.   BranchProbability getEdgeProbability(const BasicBlock *Src,
  152.                                        unsigned IndexInSuccessors) const;
  153.  
  154.   /// Get the probability of going from Src to Dst.
  155.   ///
  156.   /// It returns the sum of all probabilities for edges from Src to Dst.
  157.   BranchProbability getEdgeProbability(const BasicBlock *Src,
  158.                                        const BasicBlock *Dst) const;
  159.  
  160.   BranchProbability getEdgeProbability(const BasicBlock *Src,
  161.                                        const_succ_iterator Dst) const;
  162.  
  163.   /// Test if an edge is hot relative to other out-edges of the Src.
  164.   ///
  165.   /// Check whether this edge out of the source block is 'hot'. We define hot
  166.   /// as having a relative probability >= 80%.
  167.   bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
  168.  
  169.   /// Print an edge's probability.
  170.   ///
  171.   /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
  172.   /// then prints that probability to the provided stream. That stream is then
  173.   /// returned.
  174.   raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
  175.                                     const BasicBlock *Dst) const;
  176.  
  177. public:
  178.   /// Set the raw probabilities for all edges from the given block.
  179.   ///
  180.   /// This allows a pass to explicitly set edge probabilities for a block. It
  181.   /// can be used when updating the CFG to update the branch probability
  182.   /// information.
  183.   void setEdgeProbability(const BasicBlock *Src,
  184.                           const SmallVectorImpl<BranchProbability> &Probs);
  185.  
  186.   /// Copy outgoing edge probabilities from \p Src to \p Dst.
  187.   ///
  188.   /// This allows to keep probabilities unset for the destination if they were
  189.   /// unset for source.
  190.   void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst);
  191.  
  192.   static BranchProbability getBranchProbStackProtector(bool IsLikely) {
  193.     static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
  194.     return IsLikely ? LikelyProb : LikelyProb.getCompl();
  195.   }
  196.  
  197.   void calculate(const Function &F, const LoopInfo &LI,
  198.                  const TargetLibraryInfo *TLI, DominatorTree *DT,
  199.                  PostDominatorTree *PDT);
  200.  
  201.   /// Forget analysis results for the given basic block.
  202.   void eraseBlock(const BasicBlock *BB);
  203.  
  204.   // Data structure to track SCCs for handling irreducible loops.
  205.   class SccInfo {
  206.     // Enum of types to classify basic blocks in SCC. Basic block belonging to
  207.     // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
  208.     // basic block can be 'Header' and 'Exiting' at the same time.
  209.     enum SccBlockType {
  210.       Inner = 0x0,
  211.       Header = 0x1,
  212.       Exiting = 0x2,
  213.     };
  214.     // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
  215.     // belong to any SCC it is not in the map.
  216.     using SccMap = DenseMap<const BasicBlock *, int>;
  217.     // Each basic block in SCC is attributed with one or several types from
  218.     // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
  219.     // since basic block may be for example "Header" and "Exiting" at the same
  220.     // time and we need to be able to keep more than one value from
  221.     // SccBlockType.
  222.     using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>;
  223.     // Vector containing classification of basic blocks for all  SCCs where i'th
  224.     // vector element corresponds to SCC with ID equal to i.
  225.     using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
  226.  
  227.     SccMap SccNums;
  228.     SccBlockTypeMaps SccBlocks;
  229.  
  230.   public:
  231.     explicit SccInfo(const Function &F);
  232.  
  233.     /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
  234.     /// -1 is returned. If \p BB belongs to more than one SCC at the same time
  235.     /// result is undefined.
  236.     int getSCCNum(const BasicBlock *BB) const;
  237.     /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
  238.     /// false otherwise.
  239.     bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
  240.       return getSccBlockType(BB, SccNum) & Header;
  241.     }
  242.     /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
  243.     /// false otherwise.
  244.     bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
  245.       return getSccBlockType(BB, SccNum) & Exiting;
  246.     }
  247.     /// Fills in \p Enters vector with all such blocks that don't belong to
  248.     /// SCC with \p SccNum ID but there is an edge to a block belonging to the
  249.     /// SCC.
  250.     void getSccEnterBlocks(int SccNum,
  251.                            SmallVectorImpl<BasicBlock *> &Enters) const;
  252.     /// Fills in \p Exits vector with all such blocks that don't belong to
  253.     /// SCC with \p SccNum ID but there is an edge from a block belonging to the
  254.     /// SCC.
  255.     void getSccExitBlocks(int SccNum,
  256.                           SmallVectorImpl<BasicBlock *> &Exits) const;
  257.  
  258.   private:
  259.     /// Returns \p BB's type according to classification given by SccBlockType
  260.     /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
  261.     uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
  262.     /// Calculates \p BB's type and stores it in internal data structures for
  263.     /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
  264.     void calculateSccBlockType(const BasicBlock *BB, int SccNum);
  265.   };
  266.  
  267. private:
  268.   // We need to store CallbackVH's in order to correctly handle basic block
  269.   // removal.
  270.   class BasicBlockCallbackVH final : public CallbackVH {
  271.     BranchProbabilityInfo *BPI;
  272.  
  273.     void deleted() override {
  274.       assert(BPI != nullptr);
  275.       BPI->eraseBlock(cast<BasicBlock>(getValPtr()));
  276.     }
  277.  
  278.   public:
  279.     BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
  280.         : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
  281.   };
  282.  
  283.   /// Pair of Loop and SCC ID number. Used to unify handling of normal and
  284.   /// SCC based loop representations.
  285.   using LoopData = std::pair<Loop *, int>;
  286.   /// Helper class to keep basic block along with its loop data information.
  287.   class LoopBlock {
  288.   public:
  289.     explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
  290.                        const SccInfo &SccI);
  291.  
  292.     const BasicBlock *getBlock() const { return BB; }
  293.     BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
  294.     LoopData getLoopData() const { return LD; }
  295.     Loop *getLoop() const { return LD.first; }
  296.     int getSccNum() const { return LD.second; }
  297.  
  298.     bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
  299.     bool belongsToSameLoop(const LoopBlock &LB) const {
  300.       return (LB.getLoop() && getLoop() == LB.getLoop()) ||
  301.              (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
  302.     }
  303.  
  304.   private:
  305.     const BasicBlock *const BB = nullptr;
  306.     LoopData LD = {nullptr, -1};
  307.   };
  308.  
  309.   // Pair of LoopBlocks representing an edge from first to second block.
  310.   using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
  311.  
  312.   DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
  313.  
  314.   // Since we allow duplicate edges from one basic block to another, we use
  315.   // a pair (PredBlock and an index in the successors) to specify an edge.
  316.   using Edge = std::pair<const BasicBlock *, unsigned>;
  317.  
  318.   DenseMap<Edge, BranchProbability> Probs;
  319.  
  320.   /// Track the last function we run over for printing.
  321.   const Function *LastF = nullptr;
  322.  
  323.   const LoopInfo *LI = nullptr;
  324.  
  325.   /// Keeps information about all SCCs in a function.
  326.   std::unique_ptr<const SccInfo> SccI;
  327.  
  328.   /// Keeps mapping of a basic block to its estimated weight.
  329.   SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
  330.  
  331.   /// Keeps mapping of a loop to estimated weight to enter the loop.
  332.   SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
  333.  
  334.   /// Helper to construct LoopBlock for \p BB.
  335.   LoopBlock getLoopBlock(const BasicBlock *BB) const {
  336.     return LoopBlock(BB, *LI, *SccI.get());
  337.   }
  338.  
  339.   /// Returns true if destination block belongs to some loop and source block is
  340.   /// either doesn't belong to any loop or belongs to a loop which is not inner
  341.   /// relative to the destination block.
  342.   bool isLoopEnteringEdge(const LoopEdge &Edge) const;
  343.   /// Returns true if source block belongs to some loop and destination block is
  344.   /// either doesn't belong to any loop or belongs to a loop which is not inner
  345.   /// relative to the source block.
  346.   bool isLoopExitingEdge(const LoopEdge &Edge) const;
  347.   /// Returns true if \p Edge is either enters to or exits from some loop, false
  348.   /// in all other cases.
  349.   bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
  350.   /// Returns true if source and destination blocks belongs to the same loop and
  351.   /// destination block is loop header.
  352.   bool isLoopBackEdge(const LoopEdge &Edge) const;
  353.   // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
  354.   void getLoopEnterBlocks(const LoopBlock &LB,
  355.                           SmallVectorImpl<BasicBlock *> &Enters) const;
  356.   // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
  357.   void getLoopExitBlocks(const LoopBlock &LB,
  358.                          SmallVectorImpl<BasicBlock *> &Exits) const;
  359.  
  360.   /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated
  361.   /// weight.
  362.   std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
  363.  
  364.   /// Returns estimated weight to enter \p L. In other words it is weight of
  365.   /// loop's header block not scaled by trip count. Returns std::nullopt if \p L
  366.   /// has no no estimated weight.
  367.   std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
  368.  
  369.   /// Return estimated weight for \p Edge. Returns std::nullopt if estimated
  370.   /// weight is unknown.
  371.   std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
  372.  
  373.   /// Iterates over all edges leading from \p SrcBB to \p Successors and
  374.   /// returns maximum of all estimated weights. If at least one edge has unknown
  375.   /// estimated weight std::nullopt is returned.
  376.   template <class IterT>
  377.   std::optional<uint32_t>
  378.   getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
  379.                             iterator_range<IterT> Successors) const;
  380.  
  381.   /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
  382.   /// return true. Otherwise \p BB's weight remains unchanged and false is
  383.   /// returned. In addition all blocks/loops that might need their weight to be
  384.   /// re-estimated are put into BlockWorkList/LoopWorkList.
  385.   bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
  386.                                   SmallVectorImpl<BasicBlock *> &BlockWorkList,
  387.                                   SmallVectorImpl<LoopBlock> &LoopWorkList);
  388.  
  389.   /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
  390.   /// up the domination tree.
  391.   void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
  392.                                      PostDominatorTree *PDT, uint32_t BBWeight,
  393.                                      SmallVectorImpl<BasicBlock *> &WorkList,
  394.                                      SmallVectorImpl<LoopBlock> &LoopWorkList);
  395.  
  396.   /// Returns block's weight encoded in the IR.
  397.   std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
  398.  
  399.   // Computes estimated weights for all blocks in \p F.
  400.   void computeEestimateBlockWeight(const Function &F, DominatorTree *DT,
  401.                                    PostDominatorTree *PDT);
  402.  
  403.   /// Based on computed weights by \p computeEstimatedBlockWeight set
  404.   /// probabilities on branches.
  405.   bool calcEstimatedHeuristics(const BasicBlock *BB);
  406.   bool calcMetadataWeights(const BasicBlock *BB);
  407.   bool calcPointerHeuristics(const BasicBlock *BB);
  408.   bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
  409.   bool calcFloatingPointHeuristics(const BasicBlock *BB);
  410. };
  411.  
  412. /// Analysis pass which computes \c BranchProbabilityInfo.
  413. class BranchProbabilityAnalysis
  414.     : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
  415.   friend AnalysisInfoMixin<BranchProbabilityAnalysis>;
  416.  
  417.   static AnalysisKey Key;
  418.  
  419. public:
  420.   /// Provide the result type for this analysis pass.
  421.   using Result = BranchProbabilityInfo;
  422.  
  423.   /// Run the analysis pass over a function and produce BPI.
  424.   BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM);
  425. };
  426.  
  427. /// Printer pass for the \c BranchProbabilityAnalysis results.
  428. class BranchProbabilityPrinterPass
  429.     : public PassInfoMixin<BranchProbabilityPrinterPass> {
  430.   raw_ostream &OS;
  431.  
  432. public:
  433.   explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {}
  434.  
  435.   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
  436. };
  437.  
  438. /// Legacy analysis pass which computes \c BranchProbabilityInfo.
  439. class BranchProbabilityInfoWrapperPass : public FunctionPass {
  440.   BranchProbabilityInfo BPI;
  441.  
  442. public:
  443.   static char ID;
  444.  
  445.   BranchProbabilityInfoWrapperPass();
  446.  
  447.   BranchProbabilityInfo &getBPI() { return BPI; }
  448.   const BranchProbabilityInfo &getBPI() const { return BPI; }
  449.  
  450.   void getAnalysisUsage(AnalysisUsage &AU) const override;
  451.   bool runOnFunction(Function &F) override;
  452.   void releaseMemory() override;
  453.   void print(raw_ostream &OS, const Module *M = nullptr) const override;
  454. };
  455.  
  456. } // end namespace llvm
  457.  
  458. #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
  459.