//===- llvm/ADT/simple_ilist.h - Simple Intrusive List ----------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SIMPLE_ILIST_H
 
#define LLVM_ADT_SIMPLE_ILIST_H
 
 
 
#include "llvm/ADT/ilist_base.h"
 
#include "llvm/ADT/ilist_iterator.h"
 
#include "llvm/ADT/ilist_node.h"
 
#include "llvm/ADT/ilist_node_options.h"
 
#include "llvm/Support/Compiler.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <functional>
 
#include <iterator>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
/// A simple intrusive list implementation.
 
///
 
/// This is a simple intrusive list for a \c T that inherits from \c
 
/// ilist_node<T>.  The list never takes ownership of anything inserted in it.
 
///
 
/// Unlike \a iplist<T> and \a ilist<T>, \a simple_ilist<T> never deletes
 
/// values, and has no callback traits.
 
///
 
/// The API for adding nodes include \a push_front(), \a push_back(), and \a
 
/// insert().  These all take values by reference (not by pointer), except for
 
/// the range version of \a insert().
 
///
 
/// There are three sets of API for discarding nodes from the list: \a
 
/// remove(), which takes a reference to the node to remove, \a erase(), which
 
/// takes an iterator or iterator range and returns the next one, and \a
 
/// clear(), which empties out the container.  All three are constant time
 
/// operations.  None of these deletes any nodes; in particular, if there is a
 
/// single node in the list, then these have identical semantics:
 
/// \li \c L.remove(L.front());
 
/// \li \c L.erase(L.begin());
 
/// \li \c L.clear();
 
///
 
/// As a convenience for callers, there are parallel APIs that take a \c
 
/// Disposer (such as \c std::default_delete<T>): \a removeAndDispose(), \a
 
/// eraseAndDispose(), and \a clearAndDispose().  These have different names
 
/// because the extra semantic is otherwise non-obvious.  They are equivalent
 
/// to calling \a std::for_each() on the range to be discarded.
 
///
 
/// The currently available \p Options customize the nodes in the list.  The
 
/// same options must be specified in the \a ilist_node instantiation for
 
/// compatibility (although the order is irrelevant).
 
/// \li Use \a ilist_tag to designate which ilist_node for a given \p T this
 
/// list should use.  This is useful if a type \p T is part of multiple,
 
/// independent lists simultaneously.
 
/// \li Use \a ilist_sentinel_tracking to always (or never) track whether a
 
/// node is a sentinel.  Specifying \c true enables the \a
 
/// ilist_node::isSentinel() API.  Unlike \a ilist_node::isKnownSentinel(),
 
/// which is only appropriate for assertions, \a ilist_node::isSentinel() is
 
/// appropriate for real logic.
 
///
 
/// Here are examples of \p Options usage:
 
/// \li \c simple_ilist<T> gives the defaults.  \li \c
 
/// simple_ilist<T,ilist_sentinel_tracking<true>> enables the \a
 
/// ilist_node::isSentinel() API.
 
/// \li \c simple_ilist<T,ilist_tag<A>,ilist_sentinel_tracking<false>>
 
/// specifies a tag of A and that tracking should be off (even when
 
/// LLVM_ENABLE_ABI_BREAKING_CHECKS are enabled).
 
/// \li \c simple_ilist<T,ilist_sentinel_tracking<false>,ilist_tag<A>> is
 
/// equivalent to the last.
 
///
 
/// See \a is_valid_option for steps on adding a new option.
 
template <typename T, class... Options>
 
class simple_ilist
 
    : ilist_detail::compute_node_options<T, Options...>::type::list_base_type,
 
      ilist_detail::SpecificNodeAccess<
 
          typename ilist_detail::compute_node_options<T, Options...>::type> {
 
  static_assert(ilist_detail::check_options<Options...>::value,
 
                "Unrecognized node option!");
 
  using OptionsT =
 
      typename ilist_detail::compute_node_options<T, Options...>::type;
 
  using list_base_type = typename OptionsT::list_base_type;
 
  ilist_sentinel<OptionsT> Sentinel;
 
 
 
public:
 
  using value_type = typename OptionsT::value_type;
 
  using pointer = typename OptionsT::pointer;
 
  using reference = typename OptionsT::reference;
 
  using const_pointer = typename OptionsT::const_pointer;
 
  using const_reference = typename OptionsT::const_reference;
 
  using iterator = ilist_iterator<OptionsT, false, false>;
 
  using const_iterator = ilist_iterator<OptionsT, false, true>;
 
  using reverse_iterator = ilist_iterator<OptionsT, true, false>;
 
  using const_reverse_iterator = ilist_iterator<OptionsT, true, true>;
 
  using size_type = size_t;
 
  using difference_type = ptrdiff_t;
 
 
 
  simple_ilist() = default;
 
  ~simple_ilist() = default;
 
 
 
  // No copy constructors.
 
  simple_ilist(const simple_ilist &) = delete;
 
  simple_ilist &operator=(const simple_ilist &) = delete;
 
 
 
  // Move constructors.
 
  simple_ilist(simple_ilist &&X) { splice(end(), X); }
 
  simple_ilist &operator=(simple_ilist &&X) {
 
    clear();
 
    splice(end(), X);
 
    return *this;
 
  }
 
 
 
  iterator begin() { return ++iterator(Sentinel); }
 
  const_iterator begin() const { return ++const_iterator(Sentinel); }
 
  iterator end() { return iterator(Sentinel); }
 
  const_iterator end() const { return const_iterator(Sentinel); }
 
  reverse_iterator rbegin() { return ++reverse_iterator(Sentinel); }
 
  const_reverse_iterator rbegin() const {
 
    return ++const_reverse_iterator(Sentinel);
 
  }
 
  reverse_iterator rend() { return reverse_iterator(Sentinel); }
 
  const_reverse_iterator rend() const {
 
    return const_reverse_iterator(Sentinel);
 
  }
 
 
 
  /// Check if the list is empty in constant time.
 
  [[nodiscard]] bool empty() const { return Sentinel.empty(); }
 
 
 
  /// Calculate the size of the list in linear time.
 
  [[nodiscard]] size_type size() const { return std::distance(begin(), end()); }
 
 
 
  reference front() { return *begin(); }
 
  const_reference front() const { return *begin(); }
 
  reference back() { return *rbegin(); }
 
  const_reference back() const { return *rbegin(); }
 
 
 
  /// Insert a node at the front; never copies.
 
  void push_front(reference Node) { insert(begin(), Node); }
 
 
 
  /// Insert a node at the back; never copies.
 
  void push_back(reference Node) { insert(end(), Node); }
 
 
 
  /// Remove the node at the front; never deletes.
 
  void pop_front() { erase(begin()); }
 
 
 
  /// Remove the node at the back; never deletes.
 
  void pop_back() { erase(--end()); }
 
 
 
  /// Swap with another list in place using std::swap.
 
  void swap(simple_ilist &X) { std::swap(*this, X); }
 
 
 
  /// Insert a node by reference; never copies.
 
  iterator insert(iterator I, reference Node) {
 
    list_base_type::insertBefore(*I.getNodePtr(), *this->getNodePtr(&Node));
 
    return iterator(&Node);
 
  }
 
 
 
  /// Insert a range of nodes; never copies.
 
  template <class Iterator>
 
  void insert(iterator I, Iterator First, Iterator Last) {
 
    for (; First != Last; ++First)
 
      insert(I, *First);
 
  }
 
 
 
  /// Clone another list.
 
  template <class Cloner, class Disposer>
 
  void cloneFrom(const simple_ilist &L2, Cloner clone, Disposer dispose) {
 
    clearAndDispose(dispose);
 
    for (const_reference V : L2)
 
      push_back(*clone(V));
 
  }
 
 
 
  /// Remove a node by reference; never deletes.
 
  ///
 
  /// \see \a erase() for removing by iterator.
 
  /// \see \a removeAndDispose() if the node should be deleted.
 
  void remove(reference N) { list_base_type::remove(*this->getNodePtr(&N)); }
 
 
 
  /// Remove a node by reference and dispose of it.
 
  template <class Disposer>
 
  void removeAndDispose(reference N, Disposer dispose) {
 
    remove(N);
 
    dispose(&N);
 
  }
 
 
 
  /// Remove a node by iterator; never deletes.
 
  ///
 
  /// \see \a remove() for removing by reference.
 
  /// \see \a eraseAndDispose() it the node should be deleted.
 
  iterator erase(iterator I) {
 
    assert(I != end() && "Cannot remove end of list!");
 
    remove(*I++);
 
    return I;
 
  }
 
 
 
  /// Remove a range of nodes; never deletes.
 
  ///
 
  /// \see \a eraseAndDispose() if the nodes should be deleted.
 
  iterator erase(iterator First, iterator Last) {
 
    list_base_type::removeRange(*First.getNodePtr(), *Last.getNodePtr());
 
    return Last;
 
  }
 
 
 
  /// Remove a node by iterator and dispose of it.
 
  template <class Disposer>
 
  iterator eraseAndDispose(iterator I, Disposer dispose) {
 
    auto Next = std::next(I);
 
    erase(I);
 
    dispose(&*I);
 
    return Next;
 
  }
 
 
 
  /// Remove a range of nodes and dispose of them.
 
  template <class Disposer>
 
  iterator eraseAndDispose(iterator First, iterator Last, Disposer dispose) {
 
    while (First != Last)
 
      First = eraseAndDispose(First, dispose);
 
    return Last;
 
  }
 
 
 
  /// Clear the list; never deletes.
 
  ///
 
  /// \see \a clearAndDispose() if the nodes should be deleted.
 
  void clear() { Sentinel.reset(); }
 
 
 
  /// Clear the list and dispose of the nodes.
 
  template <class Disposer> void clearAndDispose(Disposer dispose) {
 
    eraseAndDispose(begin(), end(), dispose);
 
  }
 
 
 
  /// Splice in another list.
 
  void splice(iterator I, simple_ilist &L2) {
 
    splice(I, L2, L2.begin(), L2.end());
 
  }
 
 
 
  /// Splice in a node from another list.
 
  void splice(iterator I, simple_ilist &L2, iterator Node) {
 
    splice(I, L2, Node, std::next(Node));
 
  }
 
 
 
  /// Splice in a range of nodes from another list.
 
  void splice(iterator I, simple_ilist &, iterator First, iterator Last) {
 
    list_base_type::transferBefore(*I.getNodePtr(), *First.getNodePtr(),
 
                                   *Last.getNodePtr());
 
  }
 
 
 
  /// Merge in another list.
 
  ///
 
  /// \pre \c this and \p RHS are sorted.
 
  ///@{
 
  void merge(simple_ilist &RHS) { merge(RHS, std::less<T>()); }
 
  template <class Compare> void merge(simple_ilist &RHS, Compare comp);
 
  ///@}
 
 
 
  /// Sort the list.
 
  ///@{
 
  void sort() { sort(std::less<T>()); }
 
  template <class Compare> void sort(Compare comp);
 
  ///@}
 
};
 
 
 
template <class T, class... Options>
 
template <class Compare>
 
void simple_ilist<T, Options...>::merge(simple_ilist &RHS, Compare comp) {
 
  if (this == &RHS || RHS.empty())
 
    return;
 
  iterator LI = begin(), LE = end();
 
  iterator RI = RHS.begin(), RE = RHS.end();
 
  while (LI != LE) {
 
    if (comp(*RI, *LI)) {
 
      // Transfer a run of at least size 1 from RHS to LHS.
 
      iterator RunStart = RI++;
 
      RI = std::find_if(RI, RE, [&](reference RV) { return !comp(RV, *LI); });
 
      splice(LI, RHS, RunStart, RI);
 
      if (RI == RE)
 
        return;
 
    }
 
    ++LI;
 
  }
 
  // Transfer the remaining RHS nodes once LHS is finished.
 
  splice(LE, RHS, RI, RE);
 
}
 
 
 
template <class T, class... Options>
 
template <class Compare>
 
void simple_ilist<T, Options...>::sort(Compare comp) {
 
  // Vacuously sorted.
 
  if (empty() || std::next(begin()) == end())
 
    return;
 
 
 
  // Split the list in the middle.
 
  iterator Center = begin(), End = begin();
 
  while (End != end() && ++End != end()) {
 
    ++Center;
 
    ++End;
 
  }
 
  simple_ilist RHS;
 
  RHS.splice(RHS.end(), *this, Center, end());
 
 
 
  // Sort the sublists and merge back together.
 
  sort(comp);
 
  RHS.sort(comp);
 
  merge(RHS, comp);
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_SIMPLE_ILIST_H