//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines a Levenshtein distance function that works for any two
 
/// sequences, with each element of each sequence being analogous to a character
 
/// in a string.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_EDIT_DISTANCE_H
 
#define LLVM_ADT_EDIT_DISTANCE_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include <algorithm>
 
#include <memory>
 
 
 
namespace llvm {
 
 
 
/// Determine the edit distance between two sequences.
 
///
 
/// \param FromArray the first sequence to compare.
 
///
 
/// \param ToArray the second sequence to compare.
 
///
 
/// \param Map A Functor to apply to each item of the sequences before
 
/// comparison.
 
///
 
/// \param AllowReplacements whether to allow element replacements (change one
 
/// element into another) as a single operation, rather than as two operations
 
/// (an insertion and a removal).
 
///
 
/// \param MaxEditDistance If non-zero, the maximum edit distance that this
 
/// routine is allowed to compute. If the edit distance will exceed that
 
/// maximum, returns \c MaxEditDistance+1.
 
///
 
/// \returns the minimum number of element insertions, removals, or (if
 
/// \p AllowReplacements is \c true) replacements needed to transform one of
 
/// the given sequences into the other. If zero, the sequences are identical.
 
template <typename T, typename Functor>
 
unsigned ComputeMappedEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
 
                                   Functor Map, bool AllowReplacements = true,
 
                                   unsigned MaxEditDistance = 0) {
 
  // The algorithm implemented below is the "classic"
 
  // dynamic-programming algorithm for computing the Levenshtein
 
  // distance, which is described here:
 
  //
 
  //   http://en.wikipedia.org/wiki/Levenshtein_distance
 
  //
 
  // Although the algorithm is typically described using an m x n
 
  // array, only one row plus one element are used at a time, so this
 
  // implementation just keeps one vector for the row.  To update one entry,
 
  // only the entries to the left, top, and top-left are needed.  The left
 
  // entry is in Row[x-1], the top entry is what's in Row[x] from the last
 
  // iteration, and the top-left entry is stored in Previous.
 
  typename ArrayRef<T>::size_type m = FromArray.size();
 
  typename ArrayRef<T>::size_type n = ToArray.size();
 
 
 
  if (MaxEditDistance) {
 
    // If the difference in size between the 2 arrays is larger than the max
 
    // distance allowed, we can bail out as we will always need at least
 
    // MaxEditDistance insertions or removals.
 
    typename ArrayRef<T>::size_type AbsDiff = m > n ? m - n : n - m;
 
    if (AbsDiff > MaxEditDistance)
 
      return MaxEditDistance + 1;
 
  }
 
 
 
  const unsigned SmallBufferSize = 64;
 
  unsigned SmallBuffer[SmallBufferSize];
 
  std::unique_ptr<unsigned[]> Allocated;
 
  unsigned *Row = SmallBuffer;
 
  if (n + 1 > SmallBufferSize) {
 
    Row = new unsigned[n + 1];
 
    Allocated.reset(Row);
 
  }
 
 
 
  for (unsigned i = 1; i <= n; ++i)
 
    Row[i] = i;
 
 
 
  for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
 
    Row[0] = y;
 
    unsigned BestThisRow = Row[0];
 
 
 
    unsigned Previous = y - 1;
 
    const auto &CurItem = Map(FromArray[y - 1]);
 
    for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
 
      int OldRow = Row[x];
 
      if (AllowReplacements) {
 
        Row[x] = std::min(Previous + (CurItem == Map(ToArray[x - 1]) ? 0u : 1u),
 
                          std::min(Row[x - 1], Row[x]) + 1);
 
      }
 
      else {
 
        if (CurItem == Map(ToArray[x - 1]))
 
          Row[x] = Previous;
 
        else Row[x] = std::min(Row[x-1], Row[x]) + 1;
 
      }
 
      Previous = OldRow;
 
      BestThisRow = std::min(BestThisRow, Row[x]);
 
    }
 
 
 
    if (MaxEditDistance && BestThisRow > MaxEditDistance)
 
      return MaxEditDistance + 1;
 
  }
 
 
 
  unsigned Result = Row[n];
 
  return Result;
 
}
 
 
 
template <typename T>
 
unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
 
                             bool AllowReplacements = true,
 
                             unsigned MaxEditDistance = 0) {
 
  return ComputeMappedEditDistance(
 
      FromArray, ToArray, [](const T &X) -> const T & { return X; },
 
      AllowReplacements, MaxEditDistance);
 
}
 
 
 
} // End llvm namespace
 
 
 
#endif