//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_TWINE_H
 
#define LLVM_ADT_TWINE_H
 
 
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <string>
 
#include <string_view>
 
 
 
namespace llvm {
 
 
 
  class formatv_object_base;
 
  class raw_ostream;
 
 
 
  /// Twine - A lightweight data structure for efficiently representing the
 
  /// concatenation of temporary values as strings.
 
  ///
 
  /// A Twine is a kind of rope, it represents a concatenated string using a
 
  /// binary-tree, where the string is the preorder of the nodes. Since the
 
  /// Twine can be efficiently rendered into a buffer when its result is used,
 
  /// it avoids the cost of generating temporary values for intermediate string
 
  /// results -- particularly in cases when the Twine result is never
 
  /// required. By explicitly tracking the type of leaf nodes, we can also avoid
 
  /// the creation of temporary strings for conversions operations (such as
 
  /// appending an integer to a string).
 
  ///
 
  /// A Twine is not intended for use directly and should not be stored, its
 
  /// implementation relies on the ability to store pointers to temporary stack
 
  /// objects which may be deallocated at the end of a statement. Twines should
 
  /// only be used accepted as const references in arguments, when an API wishes
 
  /// to accept possibly-concatenated strings.
 
  ///
 
  /// Twines support a special 'null' value, which always concatenates to form
 
  /// itself, and renders as an empty string. This can be returned from APIs to
 
  /// effectively nullify any concatenations performed on the result.
 
  ///
 
  /// \b Implementation
 
  ///
 
  /// Given the nature of a Twine, it is not possible for the Twine's
 
  /// concatenation method to construct interior nodes; the result must be
 
  /// represented inside the returned value. For this reason a Twine object
 
  /// actually holds two values, the left- and right-hand sides of a
 
  /// concatenation. We also have nullary Twine objects, which are effectively
 
  /// sentinel values that represent empty strings.
 
  ///
 
  /// Thus, a Twine can effectively have zero, one, or two children. The \see
 
  /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
 
  /// testing the number of children.
 
  ///
 
  /// We maintain a number of invariants on Twine objects (FIXME: Why):
 
  ///  - Nullary twines are always represented with their Kind on the left-hand
 
  ///    side, and the Empty kind on the right-hand side.
 
  ///  - Unary twines are always represented with the value on the left-hand
 
  ///    side, and the Empty kind on the right-hand side.
 
  ///  - If a Twine has another Twine as a child, that child should always be
 
  ///    binary (otherwise it could have been folded into the parent).
 
  ///
 
  /// These invariants are check by \see isValid().
 
  ///
 
  /// \b Efficiency Considerations
 
  ///
 
  /// The Twine is designed to yield efficient and small code for common
 
  /// situations. For this reason, the concat() method is inlined so that
 
  /// concatenations of leaf nodes can be optimized into stores directly into a
 
  /// single stack allocated object.
 
  ///
 
  /// In practice, not all compilers can be trusted to optimize concat() fully,
 
  /// so we provide two additional methods (and accompanying operator+
 
  /// overloads) to guarantee that particularly important cases (cstring plus
 
  /// StringRef) codegen as desired.
 
  class Twine {
 
    /// NodeKind - Represent the type of an argument.
 
    enum NodeKind : unsigned char {
 
      /// An empty string; the result of concatenating anything with it is also
 
      /// empty.
 
      NullKind,
 
 
 
      /// The empty string.
 
      EmptyKind,
 
 
 
      /// A pointer to a Twine instance.
 
      TwineKind,
 
 
 
      /// A pointer to a C string instance.
 
      CStringKind,
 
 
 
      /// A pointer to an std::string instance.
 
      StdStringKind,
 
 
 
      /// A Pointer and Length representation. Used for std::string_view,
 
      /// StringRef, and SmallString.  Can't use a StringRef here
 
      /// because they are not trivally constructible.
 
      PtrAndLengthKind,
 
 
 
      /// A pointer to a formatv_object_base instance.
 
      FormatvObjectKind,
 
 
 
      /// A char value, to render as a character.
 
      CharKind,
 
 
 
      /// An unsigned int value, to render as an unsigned decimal integer.
 
      DecUIKind,
 
 
 
      /// An int value, to render as a signed decimal integer.
 
      DecIKind,
 
 
 
      /// A pointer to an unsigned long value, to render as an unsigned decimal
 
      /// integer.
 
      DecULKind,
 
 
 
      /// A pointer to a long value, to render as a signed decimal integer.
 
      DecLKind,
 
 
 
      /// A pointer to an unsigned long long value, to render as an unsigned
 
      /// decimal integer.
 
      DecULLKind,
 
 
 
      /// A pointer to a long long value, to render as a signed decimal integer.
 
      DecLLKind,
 
 
 
      /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
 
      /// integer.
 
      UHexKind
 
    };
 
 
 
    union Child
 
    {
 
      const Twine *twine;
 
      const char *cString;
 
      const std::string *stdString;
 
      struct {
 
        const char *ptr;
 
        size_t length;
 
      } ptrAndLength;
 
      const formatv_object_base *formatvObject;
 
      char character;
 
      unsigned int decUI;
 
      int decI;
 
      const unsigned long *decUL;
 
      const long *decL;
 
      const unsigned long long *decULL;
 
      const long long *decLL;
 
      const uint64_t *uHex;
 
    };
 
 
 
    /// LHS - The prefix in the concatenation, which may be uninitialized for
 
    /// Null or Empty kinds.
 
    Child LHS;
 
 
 
    /// RHS - The suffix in the concatenation, which may be uninitialized for
 
    /// Null or Empty kinds.
 
    Child RHS;
 
 
 
    /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
 
    NodeKind LHSKind = EmptyKind;
 
 
 
    /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
 
    NodeKind RHSKind = EmptyKind;
 
 
 
    /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
 
    explicit Twine(NodeKind Kind) : LHSKind(Kind) {
 
      assert(isNullary() && "Invalid kind!");
 
    }
 
 
 
    /// Construct a binary twine.
 
    explicit Twine(const Twine &LHS, const Twine &RHS)
 
        : LHSKind(TwineKind), RHSKind(TwineKind) {
 
      this->LHS.twine = &LHS;
 
      this->RHS.twine = &RHS;
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct a twine from explicit values.
 
    explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
 
        : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Check for the null twine.
 
    bool isNull() const {
 
      return getLHSKind() == NullKind;
 
    }
 
 
 
    /// Check for the empty twine.
 
    bool isEmpty() const {
 
      return getLHSKind() == EmptyKind;
 
    }
 
 
 
    /// Check if this is a nullary twine (null or empty).
 
    bool isNullary() const {
 
      return isNull() || isEmpty();
 
    }
 
 
 
    /// Check if this is a unary twine.
 
    bool isUnary() const {
 
      return getRHSKind() == EmptyKind && !isNullary();
 
    }
 
 
 
    /// Check if this is a binary twine.
 
    bool isBinary() const {
 
      return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
 
    }
 
 
 
    /// Check if this is a valid twine (satisfying the invariants on
 
    /// order and number of arguments).
 
    bool isValid() const {
 
      // Nullary twines always have Empty on the RHS.
 
      if (isNullary() && getRHSKind() != EmptyKind)
 
        return false;
 
 
 
      // Null should never appear on the RHS.
 
      if (getRHSKind() == NullKind)
 
        return false;
 
 
 
      // The RHS cannot be non-empty if the LHS is empty.
 
      if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
 
        return false;
 
 
 
      // A twine child should always be binary.
 
      if (getLHSKind() == TwineKind &&
 
          !LHS.twine->isBinary())
 
        return false;
 
      if (getRHSKind() == TwineKind &&
 
          !RHS.twine->isBinary())
 
        return false;
 
 
 
      return true;
 
    }
 
 
 
    /// Get the NodeKind of the left-hand side.
 
    NodeKind getLHSKind() const { return LHSKind; }
 
 
 
    /// Get the NodeKind of the right-hand side.
 
    NodeKind getRHSKind() const { return RHSKind; }
 
 
 
    /// Print one child from a twine.
 
    void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
 
 
 
    /// Print the representation of one child from a twine.
 
    void printOneChildRepr(raw_ostream &OS, Child Ptr,
 
                           NodeKind Kind) const;
 
 
 
  public:
 
    /// @name Constructors
 
    /// @{
 
 
 
    /// Construct from an empty string.
 
    /*implicit*/ Twine() {
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    Twine(const Twine &) = default;
 
 
 
    /// Construct from a C string.
 
    ///
 
    /// We take care here to optimize "" into the empty twine -- this will be
 
    /// optimized out for string constants. This allows Twine arguments have
 
    /// default "" values, without introducing unnecessary string constants.
 
    /*implicit*/ Twine(const char *Str) {
 
      if (Str[0] != '\0') {
 
        LHS.cString = Str;
 
        LHSKind = CStringKind;
 
      } else
 
        LHSKind = EmptyKind;
 
 
 
      assert(isValid() && "Invalid twine!");
 
    }
 
    /// Delete the implicit conversion from nullptr as Twine(const char *)
 
    /// cannot take nullptr.
 
    /*implicit*/ Twine(std::nullptr_t) = delete;
 
 
 
    /// Construct from an std::string.
 
    /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
 
      LHS.stdString = &Str;
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct from an std::string_view by converting it to a pointer and
 
    /// length.  This handles string_views on a pure API basis, and avoids
 
    /// storing one (or a pointer to one) inside a Twine, which avoids problems
 
    /// when mixing code compiled under various C++ standards.
 
    /*implicit*/ Twine(const std::string_view &Str)
 
        : LHSKind(PtrAndLengthKind) {
 
      LHS.ptrAndLength.ptr = Str.data();
 
      LHS.ptrAndLength.length = Str.length();
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct from a StringRef.
 
    /*implicit*/ Twine(const StringRef &Str) : LHSKind(PtrAndLengthKind) {
 
      LHS.ptrAndLength.ptr = Str.data();
 
      LHS.ptrAndLength.length = Str.size();
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct from a SmallString.
 
    /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
 
        : LHSKind(PtrAndLengthKind) {
 
      LHS.ptrAndLength.ptr = Str.data();
 
      LHS.ptrAndLength.length = Str.size();
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct from a formatv_object_base.
 
    /*implicit*/ Twine(const formatv_object_base &Fmt)
 
        : LHSKind(FormatvObjectKind) {
 
      LHS.formatvObject = &Fmt;
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct from a char.
 
    explicit Twine(char Val) : LHSKind(CharKind) {
 
      LHS.character = Val;
 
    }
 
 
 
    /// Construct from a signed char.
 
    explicit Twine(signed char Val) : LHSKind(CharKind) {
 
      LHS.character = static_cast<char>(Val);
 
    }
 
 
 
    /// Construct from an unsigned char.
 
    explicit Twine(unsigned char Val) : LHSKind(CharKind) {
 
      LHS.character = static_cast<char>(Val);
 
    }
 
 
 
    /// Construct a twine to print \p Val as an unsigned decimal integer.
 
    explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
 
      LHS.decUI = Val;
 
    }
 
 
 
    /// Construct a twine to print \p Val as a signed decimal integer.
 
    explicit Twine(int Val) : LHSKind(DecIKind) {
 
      LHS.decI = Val;
 
    }
 
 
 
    /// Construct a twine to print \p Val as an unsigned decimal integer.
 
    explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
 
      LHS.decUL = &Val;
 
    }
 
 
 
    /// Construct a twine to print \p Val as a signed decimal integer.
 
    explicit Twine(const long &Val) : LHSKind(DecLKind) {
 
      LHS.decL = &Val;
 
    }
 
 
 
    /// Construct a twine to print \p Val as an unsigned decimal integer.
 
    explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
 
      LHS.decULL = &Val;
 
    }
 
 
 
    /// Construct a twine to print \p Val as a signed decimal integer.
 
    explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
 
      LHS.decLL = &Val;
 
    }
 
 
 
    // FIXME: Unfortunately, to make sure this is as efficient as possible we
 
    // need extra binary constructors from particular types. We can't rely on
 
    // the compiler to be smart enough to fold operator+()/concat() down to the
 
    // right thing. Yet.
 
 
 
    /// Construct as the concatenation of a C string and a StringRef.
 
    /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
 
        : LHSKind(CStringKind), RHSKind(PtrAndLengthKind) {
 
      this->LHS.cString = LHS;
 
      this->RHS.ptrAndLength.ptr = RHS.data();
 
      this->RHS.ptrAndLength.length = RHS.size();
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Construct as the concatenation of a StringRef and a C string.
 
    /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
 
        : LHSKind(PtrAndLengthKind), RHSKind(CStringKind) {
 
      this->LHS.ptrAndLength.ptr = LHS.data();
 
      this->LHS.ptrAndLength.length = LHS.size();
 
      this->RHS.cString = RHS;
 
      assert(isValid() && "Invalid twine!");
 
    }
 
 
 
    /// Since the intended use of twines is as temporary objects, assignments
 
    /// when concatenating might cause undefined behavior or stack corruptions
 
    Twine &operator=(const Twine &) = delete;
 
 
 
    /// Create a 'null' string, which is an empty string that always
 
    /// concatenates to form another empty string.
 
    static Twine createNull() {
 
      return Twine(NullKind);
 
    }
 
 
 
    /// @}
 
    /// @name Numeric Conversions
 
    /// @{
 
 
 
    // Construct a twine to print \p Val as an unsigned hexadecimal integer.
 
    static Twine utohexstr(const uint64_t &Val) {
 
      Child LHS, RHS;
 
      LHS.uHex = &Val;
 
      RHS.twine = nullptr;
 
      return Twine(LHS, UHexKind, RHS, EmptyKind);
 
    }
 
 
 
    /// @}
 
    /// @name Predicate Operations
 
    /// @{
 
 
 
    /// Check if this twine is trivially empty; a false return value does not
 
    /// necessarily mean the twine is empty.
 
    bool isTriviallyEmpty() const {
 
      return isNullary();
 
    }
 
 
 
    /// Return true if this twine can be dynamically accessed as a single
 
    /// StringRef value with getSingleStringRef().
 
    bool isSingleStringRef() const {
 
      if (getRHSKind() != EmptyKind) return false;
 
 
 
      switch (getLHSKind()) {
 
      case EmptyKind:
 
      case CStringKind:
 
      case StdStringKind:
 
      case PtrAndLengthKind:
 
        return true;
 
      default:
 
        return false;
 
      }
 
    }
 
 
 
    /// @}
 
    /// @name String Operations
 
    /// @{
 
 
 
    Twine concat(const Twine &Suffix) const;
 
 
 
    /// @}
 
    /// @name Output & Conversion.
 
    /// @{
 
 
 
    /// Return the twine contents as a std::string.
 
    std::string str() const;
 
 
 
    /// Append the concatenated string into the given SmallString or SmallVector.
 
    void toVector(SmallVectorImpl<char> &Out) const;
 
 
 
    /// This returns the twine as a single StringRef.  This method is only valid
 
    /// if isSingleStringRef() is true.
 
    StringRef getSingleStringRef() const {
 
      assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
 
      switch (getLHSKind()) {
 
      default: llvm_unreachable("Out of sync with isSingleStringRef");
 
      case EmptyKind:
 
        return StringRef();
 
      case CStringKind:
 
        return StringRef(LHS.cString);
 
      case StdStringKind:
 
        return StringRef(*LHS.stdString);
 
      case PtrAndLengthKind:
 
        return StringRef(LHS.ptrAndLength.ptr, LHS.ptrAndLength.length);
 
      }
 
    }
 
 
 
    /// This returns the twine as a single StringRef if it can be
 
    /// represented as such. Otherwise the twine is written into the given
 
    /// SmallVector and a StringRef to the SmallVector's data is returned.
 
    StringRef toStringRef(SmallVectorImpl<char> &Out) const {
 
      if (isSingleStringRef())
 
        return getSingleStringRef();
 
      toVector(Out);
 
      return StringRef(Out.data(), Out.size());
 
    }
 
 
 
    /// This returns the twine as a single null terminated StringRef if it
 
    /// can be represented as such. Otherwise the twine is written into the
 
    /// given SmallVector and a StringRef to the SmallVector's data is returned.
 
    ///
 
    /// The returned StringRef's size does not include the null terminator.
 
    StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
 
 
 
    /// Write the concatenated string represented by this twine to the
 
    /// stream \p OS.
 
    void print(raw_ostream &OS) const;
 
 
 
    /// Dump the concatenated string represented by this twine to stderr.
 
    void dump() const;
 
 
 
    /// Write the representation of this twine to the stream \p OS.
 
    void printRepr(raw_ostream &OS) const;
 
 
 
    /// Dump the representation of this twine to stderr.
 
    void dumpRepr() const;
 
 
 
    /// @}
 
  };
 
 
 
  /// @name Twine Inline Implementations
 
  /// @{
 
 
 
  inline Twine Twine::concat(const Twine &Suffix) const {
 
    // Concatenation with null is null.
 
    if (isNull() || Suffix.isNull())
 
      return Twine(NullKind);
 
 
 
    // Concatenation with empty yields the other side.
 
    if (isEmpty())
 
      return Suffix;
 
    if (Suffix.isEmpty())
 
      return *this;
 
 
 
    // Otherwise we need to create a new node, taking care to fold in unary
 
    // twines.
 
    Child NewLHS, NewRHS;
 
    NewLHS.twine = this;
 
    NewRHS.twine = &Suffix;
 
    NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
 
    if (isUnary()) {
 
      NewLHS = LHS;
 
      NewLHSKind = getLHSKind();
 
    }
 
    if (Suffix.isUnary()) {
 
      NewRHS = Suffix.LHS;
 
      NewRHSKind = Suffix.getLHSKind();
 
    }
 
 
 
    return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
 
  }
 
 
 
  inline Twine operator+(const Twine &LHS, const Twine &RHS) {
 
    return LHS.concat(RHS);
 
  }
 
 
 
  /// Additional overload to guarantee simplified codegen; this is equivalent to
 
  /// concat().
 
 
 
  inline Twine operator+(const char *LHS, const StringRef &RHS) {
 
    return Twine(LHS, RHS);
 
  }
 
 
 
  /// Additional overload to guarantee simplified codegen; this is equivalent to
 
  /// concat().
 
 
 
  inline Twine operator+(const StringRef &LHS, const char *RHS) {
 
    return Twine(LHS, RHS);
 
  }
 
 
 
  inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
 
    RHS.print(OS);
 
    return OS;
 
  }
 
 
 
  /// @}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_TWINE_H