//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_TINYPTRVECTOR_H
 
#define LLVM_ADT_TINYPTRVECTOR_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
#include <type_traits>
 
 
 
namespace llvm {
 
 
 
/// TinyPtrVector - This class is specialized for cases where there are
 
/// normally 0 or 1 element in a vector, but is general enough to go beyond that
 
/// when required.
 
///
 
/// NOTE: This container doesn't allow you to store a null pointer into it.
 
///
 
template <typename EltTy>
 
class TinyPtrVector {
 
public:
 
  using VecTy = SmallVector<EltTy, 4>;
 
  using value_type = typename VecTy::value_type;
 
  // EltTy must be the first pointer type so that is<EltTy> is true for the
 
  // default-constructed PtrUnion. This allows an empty TinyPtrVector to
 
  // naturally vend a begin/end iterator of type EltTy* without an additional
 
  // check for the empty state.
 
  using PtrUnion = PointerUnion<EltTy, VecTy *>;
 
 
 
private:
 
  PtrUnion Val;
 
 
 
public:
 
  TinyPtrVector() = default;
 
 
 
  ~TinyPtrVector() {
 
    if (VecTy *V = Val.template dyn_cast<VecTy*>())
 
      delete V;
 
  }
 
 
 
  TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
 
    if (VecTy *V = Val.template dyn_cast<VecTy*>())
 
      Val = new VecTy(*V);
 
  }
 
 
 
  TinyPtrVector &operator=(const TinyPtrVector &RHS) {
 
    if (this == &RHS)
 
      return *this;
 
    if (RHS.empty()) {
 
      this->clear();
 
      return *this;
 
    }
 
 
 
    // Try to squeeze into the single slot. If it won't fit, allocate a copied
 
    // vector.
 
    if (Val.template is<EltTy>()) {
 
      if (RHS.size() == 1)
 
        Val = RHS.front();
 
      else
 
        Val = new VecTy(*RHS.Val.template get<VecTy*>());
 
      return *this;
 
    }
 
 
 
    // If we have a full vector allocated, try to re-use it.
 
    if (RHS.Val.template is<EltTy>()) {
 
      Val.template get<VecTy*>()->clear();
 
      Val.template get<VecTy*>()->push_back(RHS.front());
 
    } else {
 
      *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
 
    }
 
    return *this;
 
  }
 
 
 
  TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
 
    RHS.Val = (EltTy)nullptr;
 
  }
 
 
 
  TinyPtrVector &operator=(TinyPtrVector &&RHS) {
 
    if (this == &RHS)
 
      return *this;
 
    if (RHS.empty()) {
 
      this->clear();
 
      return *this;
 
    }
 
 
 
    // If this vector has been allocated on the heap, re-use it if cheap. If it
 
    // would require more copying, just delete it and we'll steal the other
 
    // side.
 
    if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
 
      if (RHS.Val.template is<EltTy>()) {
 
        V->clear();
 
        V->push_back(RHS.front());
 
        RHS.Val = EltTy();
 
        return *this;
 
      }
 
      delete V;
 
    }
 
 
 
    Val = RHS.Val;
 
    RHS.Val = EltTy();
 
    return *this;
 
  }
 
 
 
  TinyPtrVector(std::initializer_list<EltTy> IL)
 
      : Val(IL.size() == 0
 
                ? PtrUnion()
 
                : IL.size() == 1 ? PtrUnion(*IL.begin())
 
                                 : PtrUnion(new VecTy(IL.begin(), IL.end()))) {}
 
 
 
  /// Constructor from an ArrayRef.
 
  ///
 
  /// This also is a constructor for individual array elements due to the single
 
  /// element constructor for ArrayRef.
 
  explicit TinyPtrVector(ArrayRef<EltTy> Elts)
 
      : Val(Elts.empty()
 
                ? PtrUnion()
 
                : Elts.size() == 1
 
                      ? PtrUnion(Elts[0])
 
                      : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
 
 
 
  TinyPtrVector(size_t Count, EltTy Value)
 
      : Val(Count == 0 ? PtrUnion()
 
                       : Count == 1 ? PtrUnion(Value)
 
                                    : PtrUnion(new VecTy(Count, Value))) {}
 
 
 
  // implicit conversion operator to ArrayRef.
 
  operator ArrayRef<EltTy>() const {
 
    if (Val.isNull())
 
      return std::nullopt;
 
    if (Val.template is<EltTy>())
 
      return *Val.getAddrOfPtr1();
 
    return *Val.template get<VecTy*>();
 
  }
 
 
 
  // implicit conversion operator to MutableArrayRef.
 
  operator MutableArrayRef<EltTy>() {
 
    if (Val.isNull())
 
      return std::nullopt;
 
    if (Val.template is<EltTy>())
 
      return *Val.getAddrOfPtr1();
 
    return *Val.template get<VecTy*>();
 
  }
 
 
 
  // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
 
  template <
 
      typename U,
 
      std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
 
                       bool> = false>
 
  operator ArrayRef<U>() const {
 
    return operator ArrayRef<EltTy>();
 
  }
 
 
 
  bool empty() const {
 
    // This vector can be empty if it contains no element, or if it
 
    // contains a pointer to an empty vector.
 
    if (Val.isNull()) return true;
 
    if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
 
      return Vec->empty();
 
    return false;
 
  }
 
 
 
  unsigned size() const {
 
    if (empty())
 
      return 0;
 
    if (Val.template is<EltTy>())
 
      return 1;
 
    return Val.template get<VecTy*>()->size();
 
  }
 
 
 
  using iterator = EltTy *;
 
  using const_iterator = const EltTy *;
 
  using reverse_iterator = std::reverse_iterator<iterator>;
 
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 
 
 
  iterator begin() {
 
    if (Val.template is<EltTy>())
 
      return Val.getAddrOfPtr1();
 
 
 
    return Val.template get<VecTy *>()->begin();
 
  }
 
 
 
  iterator end() {
 
    if (Val.template is<EltTy>())
 
      return begin() + (Val.isNull() ? 0 : 1);
 
 
 
    return Val.template get<VecTy *>()->end();
 
  }
 
 
 
  const_iterator begin() const {
 
    return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
 
  }
 
 
 
  const_iterator end() const {
 
    return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
 
  }
 
 
 
  reverse_iterator rbegin() { return reverse_iterator(end()); }
 
  reverse_iterator rend() { return reverse_iterator(begin()); }
 
 
 
  const_reverse_iterator rbegin() const {
 
    return const_reverse_iterator(end());
 
  }
 
 
 
  const_reverse_iterator rend() const {
 
    return const_reverse_iterator(begin());
 
  }
 
 
 
  EltTy operator[](unsigned i) const {
 
    assert(!Val.isNull() && "can't index into an empty vector");
 
    if (Val.template is<EltTy>()) {
 
      assert(i == 0 && "tinyvector index out of range");
 
      return Val.template get<EltTy>();
 
    }
 
 
 
    assert(i < Val.template get<VecTy*>()->size() &&
 
           "tinyvector index out of range");
 
    return (*Val.template get<VecTy*>())[i];
 
  }
 
 
 
  EltTy front() const {
 
    assert(!empty() && "vector empty");
 
    if (Val.template is<EltTy>())
 
      return Val.template get<EltTy>();
 
    return Val.template get<VecTy*>()->front();
 
  }
 
 
 
  EltTy back() const {
 
    assert(!empty() && "vector empty");
 
    if (Val.template is<EltTy>())
 
      return Val.template get<EltTy>();
 
    return Val.template get<VecTy*>()->back();
 
  }
 
 
 
  void push_back(EltTy NewVal) {
 
    // If we have nothing, add something.
 
    if (Val.isNull()) {
 
      Val = NewVal;
 
      assert(!Val.isNull() && "Can't add a null value");
 
      return;
 
    }
 
 
 
    // If we have a single value, convert to a vector.
 
    if (Val.template is<EltTy>()) {
 
      EltTy V = Val.template get<EltTy>();
 
      Val = new VecTy();
 
      Val.template get<VecTy*>()->push_back(V);
 
    }
 
 
 
    // Add the new value, we know we have a vector.
 
    Val.template get<VecTy*>()->push_back(NewVal);
 
  }
 
 
 
  void pop_back() {
 
    // If we have a single value, convert to empty.
 
    if (Val.template is<EltTy>())
 
      Val = (EltTy)nullptr;
 
    else if (VecTy *Vec = Val.template get<VecTy*>())
 
      Vec->pop_back();
 
  }
 
 
 
  void clear() {
 
    // If we have a single value, convert to empty.
 
    if (Val.template is<EltTy>()) {
 
      Val = EltTy();
 
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
 
      // If we have a vector form, just clear it.
 
      Vec->clear();
 
    }
 
    // Otherwise, we're already empty.
 
  }
 
 
 
  iterator erase(iterator I) {
 
    assert(I >= begin() && "Iterator to erase is out of bounds.");
 
    assert(I < end() && "Erasing at past-the-end iterator.");
 
 
 
    // If we have a single value, convert to empty.
 
    if (Val.template is<EltTy>()) {
 
      if (I == begin())
 
        Val = EltTy();
 
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
 
      // multiple items in a vector; just do the erase, there is no
 
      // benefit to collapsing back to a pointer
 
      return Vec->erase(I);
 
    }
 
    return end();
 
  }
 
 
 
  iterator erase(iterator S, iterator E) {
 
    assert(S >= begin() && "Range to erase is out of bounds.");
 
    assert(S <= E && "Trying to erase invalid range.");
 
    assert(E <= end() && "Trying to erase past the end.");
 
 
 
    if (Val.template is<EltTy>()) {
 
      if (S == begin() && S != E)
 
        Val = EltTy();
 
    } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
 
      return Vec->erase(S, E);
 
    }
 
    return end();
 
  }
 
 
 
  iterator insert(iterator I, const EltTy &Elt) {
 
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
 
    assert(I <= this->end() && "Inserting past the end of the vector.");
 
    if (I == end()) {
 
      push_back(Elt);
 
      return std::prev(end());
 
    }
 
    assert(!Val.isNull() && "Null value with non-end insert iterator.");
 
    if (Val.template is<EltTy>()) {
 
      EltTy V = Val.template get<EltTy>();
 
      assert(I == begin());
 
      Val = Elt;
 
      push_back(V);
 
      return begin();
 
    }
 
 
 
    return Val.template get<VecTy*>()->insert(I, Elt);
 
  }
 
 
 
  template<typename ItTy>
 
  iterator insert(iterator I, ItTy From, ItTy To) {
 
    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
 
    assert(I <= this->end() && "Inserting past the end of the vector.");
 
    if (From == To)
 
      return I;
 
 
 
    // If we have a single value, convert to a vector.
 
    ptrdiff_t Offset = I - begin();
 
    if (Val.isNull()) {
 
      if (std::next(From) == To) {
 
        Val = *From;
 
        return begin();
 
      }
 
 
 
      Val = new VecTy();
 
    } else if (Val.template is<EltTy>()) {
 
      EltTy V = Val.template get<EltTy>();
 
      Val = new VecTy();
 
      Val.template get<VecTy*>()->push_back(V);
 
    }
 
    return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_TINYPTRVECTOR_H