- //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// 
- /// \file 
- /// This file defines the SparseSet class derived from the version described in 
- /// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters 
- /// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993. 
- /// 
- /// A sparse set holds a small number of objects identified by integer keys from 
- /// a moderately sized universe. The sparse set uses more memory than other 
- /// containers in order to provide faster operations. 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ADT_SPARSESET_H 
- #define LLVM_ADT_SPARSESET_H 
-   
- #include "llvm/ADT/identity.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/Support/AllocatorBase.h" 
- #include <cassert> 
- #include <cstdint> 
- #include <cstdlib> 
- #include <limits> 
- #include <utility> 
-   
- namespace llvm { 
-   
- /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can 
- /// be uniquely converted to a small integer less than the set's universe. This 
- /// class allows the set to hold values that differ from the set's key type as 
- /// long as an index can still be derived from the value. SparseSet never 
- /// directly compares ValueT, only their indices, so it can map keys to 
- /// arbitrary values. SparseSetValTraits computes the index from the value 
- /// object. To compute the index from a key, SparseSet uses a separate 
- /// KeyFunctorT template argument. 
- /// 
- /// A simple type declaration, SparseSet<Type>, handles these cases: 
- /// - unsigned key, identity index, identity value 
- /// - unsigned key, identity index, fat value providing getSparseSetIndex() 
- /// 
- /// The type declaration SparseSet<Type, UnaryFunction> handles: 
- /// - unsigned key, remapped index, identity value (virtual registers) 
- /// - pointer key, pointer-derived index, identity value (node+ID) 
- /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() 
- /// 
- /// Only other, unexpected cases require specializing SparseSetValTraits. 
- /// 
- /// For best results, ValueT should not require a destructor. 
- /// 
- template<typename ValueT> 
- struct SparseSetValTraits { 
-   static unsigned getValIndex(const ValueT &Val) { 
-     return Val.getSparseSetIndex(); 
-   } 
- }; 
-   
- /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The 
- /// generic implementation handles ValueT classes which either provide 
- /// getSparseSetIndex() or specialize SparseSetValTraits<>. 
- /// 
- template<typename KeyT, typename ValueT, typename KeyFunctorT> 
- struct SparseSetValFunctor { 
-   unsigned operator()(const ValueT &Val) const { 
-     return SparseSetValTraits<ValueT>::getValIndex(Val); 
-   } 
- }; 
-   
- /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of 
- /// identity key/value sets. 
- template<typename KeyT, typename KeyFunctorT> 
- struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { 
-   unsigned operator()(const KeyT &Key) const { 
-     return KeyFunctorT()(Key); 
-   } 
- }; 
-   
- /// SparseSet - Fast set implementation for objects that can be identified by 
- /// small unsigned keys. 
- /// 
- /// SparseSet allocates memory proportional to the size of the key universe, so 
- /// it is not recommended for building composite data structures.  It is useful 
- /// for algorithms that require a single set with fast operations. 
- /// 
- /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast 
- /// clear() and iteration as fast as a vector.  The find(), insert(), and 
- /// erase() operations are all constant time, and typically faster than a hash 
- /// table.  The iteration order doesn't depend on numerical key values, it only 
- /// depends on the order of insert() and erase() operations.  When no elements 
- /// have been erased, the iteration order is the insertion order. 
- /// 
- /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but 
- /// offers constant-time clear() and size() operations as well as fast 
- /// iteration independent on the size of the universe. 
- /// 
- /// SparseSet contains a dense vector holding all the objects and a sparse 
- /// array holding indexes into the dense vector.  Most of the memory is used by 
- /// the sparse array which is the size of the key universe.  The SparseT 
- /// template parameter provides a space/speed tradeoff for sets holding many 
- /// elements. 
- /// 
- /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse 
- /// array uses 4 x Universe bytes. 
- /// 
- /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache 
- /// lines, but the sparse array is 4x smaller.  N is the number of elements in 
- /// the set. 
- /// 
- /// For sets that may grow to thousands of elements, SparseT should be set to 
- /// uint16_t or uint32_t. 
- /// 
- /// @tparam ValueT      The type of objects in the set. 
- /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 
- /// @tparam SparseT     An unsigned integer type. See above. 
- /// 
- template<typename ValueT, 
-          typename KeyFunctorT = identity<unsigned>, 
-          typename SparseT = uint8_t> 
- class SparseSet { 
-   static_assert(std::is_unsigned_v<SparseT>, 
-                 "SparseT must be an unsigned integer type"); 
-   
-   using KeyT = typename KeyFunctorT::argument_type; 
-   using DenseT = SmallVector<ValueT, 8>; 
-   using size_type = unsigned; 
-   DenseT Dense; 
-   SparseT *Sparse = nullptr; 
-   unsigned Universe = 0; 
-   KeyFunctorT KeyIndexOf; 
-   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 
-   
- public: 
-   using value_type = ValueT; 
-   using reference = ValueT &; 
-   using const_reference = const ValueT &; 
-   using pointer = ValueT *; 
-   using const_pointer = const ValueT *; 
-   
-   SparseSet() = default; 
-   SparseSet(const SparseSet &) = delete; 
-   SparseSet &operator=(const SparseSet &) = delete; 
-   ~SparseSet() { free(Sparse); } 
-   
-   /// setUniverse - Set the universe size which determines the largest key the 
-   /// set can hold.  The universe must be sized before any elements can be 
-   /// added. 
-   /// 
-   /// @param U Universe size. All object keys must be less than U. 
-   /// 
-   void setUniverse(unsigned U) { 
-     // It's not hard to resize the universe on a non-empty set, but it doesn't 
-     // seem like a likely use case, so we can add that code when we need it. 
-     assert(empty() && "Can only resize universe on an empty map"); 
-     // Hysteresis prevents needless reallocations. 
-     if (U >= Universe/4 && U <= Universe) 
-       return; 
-     free(Sparse); 
-     // The Sparse array doesn't actually need to be initialized, so malloc 
-     // would be enough here, but that will cause tools like valgrind to 
-     // complain about branching on uninitialized data. 
-     Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 
-     Universe = U; 
-   } 
-   
-   // Import trivial vector stuff from DenseT. 
-   using iterator = typename DenseT::iterator; 
-   using const_iterator = typename DenseT::const_iterator; 
-   
-   const_iterator begin() const { return Dense.begin(); } 
-   const_iterator end() const { return Dense.end(); } 
-   iterator begin() { return Dense.begin(); } 
-   iterator end() { return Dense.end(); } 
-   
-   /// empty - Returns true if the set is empty. 
-   /// 
-   /// This is not the same as BitVector::empty(). 
-   /// 
-   bool empty() const { return Dense.empty(); } 
-   
-   /// size - Returns the number of elements in the set. 
-   /// 
-   /// This is not the same as BitVector::size() which returns the size of the 
-   /// universe. 
-   /// 
-   size_type size() const { return Dense.size(); } 
-   
-   /// clear - Clears the set.  This is a very fast constant time operation. 
-   /// 
-   void clear() { 
-     // Sparse does not need to be cleared, see find(). 
-     Dense.clear(); 
-   } 
-   
-   /// findIndex - Find an element by its index. 
-   /// 
-   /// @param   Idx A valid index to find. 
-   /// @returns An iterator to the element identified by key, or end(). 
-   /// 
-   iterator findIndex(unsigned Idx) { 
-     assert(Idx < Universe && "Key out of range"); 
-     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 
-     for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { 
-       const unsigned FoundIdx = ValIndexOf(Dense[i]); 
-       assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); 
-       if (Idx == FoundIdx) 
-         return begin() + i; 
-       // Stride is 0 when SparseT >= unsigned.  We don't need to loop. 
-       if (!Stride) 
-         break; 
-     } 
-     return end(); 
-   } 
-   
-   /// find - Find an element by its key. 
-   /// 
-   /// @param   Key A valid key to find. 
-   /// @returns An iterator to the element identified by key, or end(). 
-   /// 
-   iterator find(const KeyT &Key) { 
-     return findIndex(KeyIndexOf(Key)); 
-   } 
-   
-   const_iterator find(const KeyT &Key) const { 
-     return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); 
-   } 
-   
-   /// Check if the set contains the given \c Key. 
-   /// 
-   /// @param Key A valid key to find. 
-   bool contains(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; } 
-   
-   /// count - Returns 1 if this set contains an element identified by Key, 
-   /// 0 otherwise. 
-   /// 
-   size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } 
-   
-   /// insert - Attempts to insert a new element. 
-   /// 
-   /// If Val is successfully inserted, return (I, true), where I is an iterator 
-   /// pointing to the newly inserted element. 
-   /// 
-   /// If the set already contains an element with the same key as Val, return 
-   /// (I, false), where I is an iterator pointing to the existing element. 
-   /// 
-   /// Insertion invalidates all iterators. 
-   /// 
-   std::pair<iterator, bool> insert(const ValueT &Val) { 
-     unsigned Idx = ValIndexOf(Val); 
-     iterator I = findIndex(Idx); 
-     if (I != end()) 
-       return std::make_pair(I, false); 
-     Sparse[Idx] = size(); 
-     Dense.push_back(Val); 
-     return std::make_pair(end() - 1, true); 
-   } 
-   
-   /// array subscript - If an element already exists with this key, return it. 
-   /// Otherwise, automatically construct a new value from Key, insert it, 
-   /// and return the newly inserted element. 
-   ValueT &operator[](const KeyT &Key) { 
-     return *insert(ValueT(Key)).first; 
-   } 
-   
-   ValueT pop_back_val() { 
-     // Sparse does not need to be cleared, see find(). 
-     return Dense.pop_back_val(); 
-   } 
-   
-   /// erase - Erases an existing element identified by a valid iterator. 
-   /// 
-   /// This invalidates all iterators, but erase() returns an iterator pointing 
-   /// to the next element.  This makes it possible to erase selected elements 
-   /// while iterating over the set: 
-   /// 
-   ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();) 
-   ///     if (test(*I)) 
-   ///       I = Set.erase(I); 
-   ///     else 
-   ///       ++I; 
-   /// 
-   /// Note that end() changes when elements are erased, unlike std::list. 
-   /// 
-   iterator erase(iterator I) { 
-     assert(unsigned(I - begin()) < size() && "Invalid iterator"); 
-     if (I != end() - 1) { 
-       *I = Dense.back(); 
-       unsigned BackIdx = ValIndexOf(Dense.back()); 
-       assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); 
-       Sparse[BackIdx] = I - begin(); 
-     } 
-     // This depends on SmallVector::pop_back() not invalidating iterators. 
-     // std::vector::pop_back() doesn't give that guarantee. 
-     Dense.pop_back(); 
-     return I; 
-   } 
-   
-   /// erase - Erases an element identified by Key, if it exists. 
-   /// 
-   /// @param   Key The key identifying the element to erase. 
-   /// @returns True when an element was erased, false if no element was found. 
-   /// 
-   bool erase(const KeyT &Key) { 
-     iterator I = find(Key); 
-     if (I == end()) 
-       return false; 
-     erase(I); 
-     return true; 
-   } 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_ADT_SPARSESET_H 
-