Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// \file
  10. /// This file defines the SparseMultiSet class, which adds multiset behavior to
  11. /// the SparseSet.
  12. ///
  13. /// A sparse multiset holds a small number of objects identified by integer keys
  14. /// from a moderately sized universe. The sparse multiset uses more memory than
  15. /// other containers in order to provide faster operations. Any key can map to
  16. /// multiple values. A SparseMultiSetNode class is provided, which serves as a
  17. /// convenient base class for the contents of a SparseMultiSet.
  18. ///
  19. //===----------------------------------------------------------------------===//
  20.  
  21. #ifndef LLVM_ADT_SPARSEMULTISET_H
  22. #define LLVM_ADT_SPARSEMULTISET_H
  23.  
  24. #include "llvm/ADT/identity.h"
  25. #include "llvm/ADT/SmallVector.h"
  26. #include "llvm/ADT/SparseSet.h"
  27. #include <cassert>
  28. #include <cstdint>
  29. #include <cstdlib>
  30. #include <iterator>
  31. #include <limits>
  32. #include <utility>
  33.  
  34. namespace llvm {
  35.  
  36. /// Fast multiset implementation for objects that can be identified by small
  37. /// unsigned keys.
  38. ///
  39. /// SparseMultiSet allocates memory proportional to the size of the key
  40. /// universe, so it is not recommended for building composite data structures.
  41. /// It is useful for algorithms that require a single set with fast operations.
  42. ///
  43. /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
  44. /// fast clear() as fast as a vector.  The find(), insert(), and erase()
  45. /// operations are all constant time, and typically faster than a hash table.
  46. /// The iteration order doesn't depend on numerical key values, it only depends
  47. /// on the order of insert() and erase() operations.  Iteration order is the
  48. /// insertion order. Iteration is only provided over elements of equivalent
  49. /// keys, but iterators are bidirectional.
  50. ///
  51. /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
  52. /// offers constant-time clear() and size() operations as well as fast iteration
  53. /// independent on the size of the universe.
  54. ///
  55. /// SparseMultiSet contains a dense vector holding all the objects and a sparse
  56. /// array holding indexes into the dense vector.  Most of the memory is used by
  57. /// the sparse array which is the size of the key universe. The SparseT template
  58. /// parameter provides a space/speed tradeoff for sets holding many elements.
  59. ///
  60. /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
  61. /// sparse array uses 4 x Universe bytes.
  62. ///
  63. /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
  64. /// lines, but the sparse array is 4x smaller.  N is the number of elements in
  65. /// the set.
  66. ///
  67. /// For sets that may grow to thousands of elements, SparseT should be set to
  68. /// uint16_t or uint32_t.
  69. ///
  70. /// Multiset behavior is provided by providing doubly linked lists for values
  71. /// that are inlined in the dense vector. SparseMultiSet is a good choice when
  72. /// one desires a growable number of entries per key, as it will retain the
  73. /// SparseSet algorithmic properties despite being growable. Thus, it is often a
  74. /// better choice than a SparseSet of growable containers or a vector of
  75. /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
  76. /// the iterators don't point to the element erased), allowing for more
  77. /// intuitive and fast removal.
  78. ///
  79. /// @tparam ValueT      The type of objects in the set.
  80. /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
  81. /// @tparam SparseT     An unsigned integer type. See above.
  82. ///
  83. template<typename ValueT,
  84.          typename KeyFunctorT = identity<unsigned>,
  85.          typename SparseT = uint8_t>
  86. class SparseMultiSet {
  87.   static_assert(std::is_unsigned_v<SparseT>,
  88.                 "SparseT must be an unsigned integer type");
  89.  
  90.   /// The actual data that's stored, as a doubly-linked list implemented via
  91.   /// indices into the DenseVector.  The doubly linked list is implemented
  92.   /// circular in Prev indices, and INVALID-terminated in Next indices. This
  93.   /// provides efficient access to list tails. These nodes can also be
  94.   /// tombstones, in which case they are actually nodes in a single-linked
  95.   /// freelist of recyclable slots.
  96.   struct SMSNode {
  97.     static constexpr unsigned INVALID = ~0U;
  98.  
  99.     ValueT Data;
  100.     unsigned Prev;
  101.     unsigned Next;
  102.  
  103.     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
  104.  
  105.     /// List tails have invalid Nexts.
  106.     bool isTail() const {
  107.       return Next == INVALID;
  108.     }
  109.  
  110.     /// Whether this node is a tombstone node, and thus is in our freelist.
  111.     bool isTombstone() const {
  112.       return Prev == INVALID;
  113.     }
  114.  
  115.     /// Since the list is circular in Prev, all non-tombstone nodes have a valid
  116.     /// Prev.
  117.     bool isValid() const { return Prev != INVALID; }
  118.   };
  119.  
  120.   using KeyT = typename KeyFunctorT::argument_type;
  121.   using DenseT = SmallVector<SMSNode, 8>;
  122.   DenseT Dense;
  123.   SparseT *Sparse = nullptr;
  124.   unsigned Universe = 0;
  125.   KeyFunctorT KeyIndexOf;
  126.   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
  127.  
  128.   /// We have a built-in recycler for reusing tombstone slots. This recycler
  129.   /// puts a singly-linked free list into tombstone slots, allowing us quick
  130.   /// erasure, iterator preservation, and dense size.
  131.   unsigned FreelistIdx = SMSNode::INVALID;
  132.   unsigned NumFree = 0;
  133.  
  134.   unsigned sparseIndex(const ValueT &Val) const {
  135.     assert(ValIndexOf(Val) < Universe &&
  136.            "Invalid key in set. Did object mutate?");
  137.     return ValIndexOf(Val);
  138.   }
  139.   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
  140.  
  141.   /// Whether the given entry is the head of the list. List heads's previous
  142.   /// pointers are to the tail of the list, allowing for efficient access to the
  143.   /// list tail. D must be a valid entry node.
  144.   bool isHead(const SMSNode &D) const {
  145.     assert(D.isValid() && "Invalid node for head");
  146.     return Dense[D.Prev].isTail();
  147.   }
  148.  
  149.   /// Whether the given entry is a singleton entry, i.e. the only entry with
  150.   /// that key.
  151.   bool isSingleton(const SMSNode &N) const {
  152.     assert(N.isValid() && "Invalid node for singleton");
  153.     // Is N its own predecessor?
  154.     return &Dense[N.Prev] == &N;
  155.   }
  156.  
  157.   /// Add in the given SMSNode. Uses a free entry in our freelist if
  158.   /// available. Returns the index of the added node.
  159.   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
  160.     if (NumFree == 0) {
  161.       Dense.push_back(SMSNode(V, Prev, Next));
  162.       return Dense.size() - 1;
  163.     }
  164.  
  165.     // Peel off a free slot
  166.     unsigned Idx = FreelistIdx;
  167.     unsigned NextFree = Dense[Idx].Next;
  168.     assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
  169.  
  170.     Dense[Idx] = SMSNode(V, Prev, Next);
  171.     FreelistIdx = NextFree;
  172.     --NumFree;
  173.     return Idx;
  174.   }
  175.  
  176.   /// Make the current index a new tombstone. Pushes it onto the freelist.
  177.   void makeTombstone(unsigned Idx) {
  178.     Dense[Idx].Prev = SMSNode::INVALID;
  179.     Dense[Idx].Next = FreelistIdx;
  180.     FreelistIdx = Idx;
  181.     ++NumFree;
  182.   }
  183.  
  184. public:
  185.   using value_type = ValueT;
  186.   using reference = ValueT &;
  187.   using const_reference = const ValueT &;
  188.   using pointer = ValueT *;
  189.   using const_pointer = const ValueT *;
  190.   using size_type = unsigned;
  191.  
  192.   SparseMultiSet() = default;
  193.   SparseMultiSet(const SparseMultiSet &) = delete;
  194.   SparseMultiSet &operator=(const SparseMultiSet &) = delete;
  195.   ~SparseMultiSet() { free(Sparse); }
  196.  
  197.   /// Set the universe size which determines the largest key the set can hold.
  198.   /// The universe must be sized before any elements can be added.
  199.   ///
  200.   /// @param U Universe size. All object keys must be less than U.
  201.   ///
  202.   void setUniverse(unsigned U) {
  203.     // It's not hard to resize the universe on a non-empty set, but it doesn't
  204.     // seem like a likely use case, so we can add that code when we need it.
  205.     assert(empty() && "Can only resize universe on an empty map");
  206.     // Hysteresis prevents needless reallocations.
  207.     if (U >= Universe/4 && U <= Universe)
  208.       return;
  209.     free(Sparse);
  210.     // The Sparse array doesn't actually need to be initialized, so malloc
  211.     // would be enough here, but that will cause tools like valgrind to
  212.     // complain about branching on uninitialized data.
  213.     Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
  214.     Universe = U;
  215.   }
  216.  
  217.   /// Our iterators are iterators over the collection of objects that share a
  218.   /// key.
  219.   template <typename SMSPtrTy> class iterator_base {
  220.     friend class SparseMultiSet;
  221.  
  222.   public:
  223.     using iterator_category = std::bidirectional_iterator_tag;
  224.     using value_type = ValueT;
  225.     using difference_type = std::ptrdiff_t;
  226.     using pointer = value_type *;
  227.     using reference = value_type &;
  228.  
  229.   private:
  230.     SMSPtrTy SMS;
  231.     unsigned Idx;
  232.     unsigned SparseIdx;
  233.  
  234.     iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
  235.       : SMS(P), Idx(I), SparseIdx(SI) {}
  236.  
  237.     /// Whether our iterator has fallen outside our dense vector.
  238.     bool isEnd() const {
  239.       if (Idx == SMSNode::INVALID)
  240.         return true;
  241.  
  242.       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
  243.       return false;
  244.     }
  245.  
  246.     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
  247.     bool isKeyed() const { return SparseIdx < SMS->Universe; }
  248.  
  249.     unsigned Prev() const { return SMS->Dense[Idx].Prev; }
  250.     unsigned Next() const { return SMS->Dense[Idx].Next; }
  251.  
  252.     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
  253.     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
  254.  
  255.   public:
  256.     reference operator*() const {
  257.       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
  258.              "Dereferencing iterator of invalid key or index");
  259.  
  260.       return SMS->Dense[Idx].Data;
  261.     }
  262.     pointer operator->() const { return &operator*(); }
  263.  
  264.     /// Comparison operators
  265.     bool operator==(const iterator_base &RHS) const {
  266.       // end compares equal
  267.       if (SMS == RHS.SMS && Idx == RHS.Idx) {
  268.         assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
  269.                "Same dense entry, but different keys?");
  270.         return true;
  271.       }
  272.  
  273.       return false;
  274.     }
  275.  
  276.     bool operator!=(const iterator_base &RHS) const {
  277.       return !operator==(RHS);
  278.     }
  279.  
  280.     /// Increment and decrement operators
  281.     iterator_base &operator--() { // predecrement - Back up
  282.       assert(isKeyed() && "Decrementing an invalid iterator");
  283.       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
  284.              "Decrementing head of list");
  285.  
  286.       // If we're at the end, then issue a new find()
  287.       if (isEnd())
  288.         Idx = SMS->findIndex(SparseIdx).Prev();
  289.       else
  290.         Idx = Prev();
  291.  
  292.       return *this;
  293.     }
  294.     iterator_base &operator++() { // preincrement - Advance
  295.       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
  296.       Idx = Next();
  297.       return *this;
  298.     }
  299.     iterator_base operator--(int) { // postdecrement
  300.       iterator_base I(*this);
  301.       --*this;
  302.       return I;
  303.     }
  304.     iterator_base operator++(int) { // postincrement
  305.       iterator_base I(*this);
  306.       ++*this;
  307.       return I;
  308.     }
  309.   };
  310.  
  311.   using iterator = iterator_base<SparseMultiSet *>;
  312.   using const_iterator = iterator_base<const SparseMultiSet *>;
  313.  
  314.   // Convenience types
  315.   using RangePair = std::pair<iterator, iterator>;
  316.  
  317.   /// Returns an iterator past this container. Note that such an iterator cannot
  318.   /// be decremented, but will compare equal to other end iterators.
  319.   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
  320.   const_iterator end() const {
  321.     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
  322.   }
  323.  
  324.   /// Returns true if the set is empty.
  325.   ///
  326.   /// This is not the same as BitVector::empty().
  327.   ///
  328.   bool empty() const { return size() == 0; }
  329.  
  330.   /// Returns the number of elements in the set.
  331.   ///
  332.   /// This is not the same as BitVector::size() which returns the size of the
  333.   /// universe.
  334.   ///
  335.   size_type size() const {
  336.     assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
  337.     return Dense.size() - NumFree;
  338.   }
  339.  
  340.   /// Clears the set.  This is a very fast constant time operation.
  341.   ///
  342.   void clear() {
  343.     // Sparse does not need to be cleared, see find().
  344.     Dense.clear();
  345.     NumFree = 0;
  346.     FreelistIdx = SMSNode::INVALID;
  347.   }
  348.  
  349.   /// Find an element by its index.
  350.   ///
  351.   /// @param   Idx A valid index to find.
  352.   /// @returns An iterator to the element identified by key, or end().
  353.   ///
  354.   iterator findIndex(unsigned Idx) {
  355.     assert(Idx < Universe && "Key out of range");
  356.     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
  357.     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
  358.       const unsigned FoundIdx = sparseIndex(Dense[i]);
  359.       // Check that we're pointing at the correct entry and that it is the head
  360.       // of a valid list.
  361.       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
  362.         return iterator(this, i, Idx);
  363.       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
  364.       if (!Stride)
  365.         break;
  366.     }
  367.     return end();
  368.   }
  369.  
  370.   /// Find an element by its key.
  371.   ///
  372.   /// @param   Key A valid key to find.
  373.   /// @returns An iterator to the element identified by key, or end().
  374.   ///
  375.   iterator find(const KeyT &Key) {
  376.     return findIndex(KeyIndexOf(Key));
  377.   }
  378.  
  379.   const_iterator find(const KeyT &Key) const {
  380.     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
  381.     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
  382.   }
  383.  
  384.   /// Returns the number of elements identified by Key. This will be linear in
  385.   /// the number of elements of that key.
  386.   size_type count(const KeyT &Key) const {
  387.     unsigned Ret = 0;
  388.     for (const_iterator It = find(Key); It != end(); ++It)
  389.       ++Ret;
  390.  
  391.     return Ret;
  392.   }
  393.  
  394.   /// Returns true if this set contains an element identified by Key.
  395.   bool contains(const KeyT &Key) const {
  396.     return find(Key) != end();
  397.   }
  398.  
  399.   /// Return the head and tail of the subset's list, otherwise returns end().
  400.   iterator getHead(const KeyT &Key) { return find(Key); }
  401.   iterator getTail(const KeyT &Key) {
  402.     iterator I = find(Key);
  403.     if (I != end())
  404.       I = iterator(this, I.Prev(), KeyIndexOf(Key));
  405.     return I;
  406.   }
  407.  
  408.   /// The bounds of the range of items sharing Key K. First member is the head
  409.   /// of the list, and the second member is a decrementable end iterator for
  410.   /// that key.
  411.   RangePair equal_range(const KeyT &K) {
  412.     iterator B = find(K);
  413.     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
  414.     return std::make_pair(B, E);
  415.   }
  416.  
  417.   /// Insert a new element at the tail of the subset list. Returns an iterator
  418.   /// to the newly added entry.
  419.   iterator insert(const ValueT &Val) {
  420.     unsigned Idx = sparseIndex(Val);
  421.     iterator I = findIndex(Idx);
  422.  
  423.     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
  424.  
  425.     if (I == end()) {
  426.       // Make a singleton list
  427.       Sparse[Idx] = NodeIdx;
  428.       Dense[NodeIdx].Prev = NodeIdx;
  429.       return iterator(this, NodeIdx, Idx);
  430.     }
  431.  
  432.     // Stick it at the end.
  433.     unsigned HeadIdx = I.Idx;
  434.     unsigned TailIdx = I.Prev();
  435.     Dense[TailIdx].Next = NodeIdx;
  436.     Dense[HeadIdx].Prev = NodeIdx;
  437.     Dense[NodeIdx].Prev = TailIdx;
  438.  
  439.     return iterator(this, NodeIdx, Idx);
  440.   }
  441.  
  442.   /// Erases an existing element identified by a valid iterator.
  443.   ///
  444.   /// This invalidates iterators pointing at the same entry, but erase() returns
  445.   /// an iterator pointing to the next element in the subset's list. This makes
  446.   /// it possible to erase selected elements while iterating over the subset:
  447.   ///
  448.   ///   tie(I, E) = Set.equal_range(Key);
  449.   ///   while (I != E)
  450.   ///     if (test(*I))
  451.   ///       I = Set.erase(I);
  452.   ///     else
  453.   ///       ++I;
  454.   ///
  455.   /// Note that if the last element in the subset list is erased, this will
  456.   /// return an end iterator which can be decremented to get the new tail (if it
  457.   /// exists):
  458.   ///
  459.   ///  tie(B, I) = Set.equal_range(Key);
  460.   ///  for (bool isBegin = B == I; !isBegin; /* empty */) {
  461.   ///    isBegin = (--I) == B;
  462.   ///    if (test(I))
  463.   ///      break;
  464.   ///    I = erase(I);
  465.   ///  }
  466.   iterator erase(iterator I) {
  467.     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
  468.            "erasing invalid/end/tombstone iterator");
  469.  
  470.     // First, unlink the node from its list. Then swap the node out with the
  471.     // dense vector's last entry
  472.     iterator NextI = unlink(Dense[I.Idx]);
  473.  
  474.     // Put in a tombstone.
  475.     makeTombstone(I.Idx);
  476.  
  477.     return NextI;
  478.   }
  479.  
  480.   /// Erase all elements with the given key. This invalidates all
  481.   /// iterators of that key.
  482.   void eraseAll(const KeyT &K) {
  483.     for (iterator I = find(K); I != end(); /* empty */)
  484.       I = erase(I);
  485.   }
  486.  
  487. private:
  488.   /// Unlink the node from its list. Returns the next node in the list.
  489.   iterator unlink(const SMSNode &N) {
  490.     if (isSingleton(N)) {
  491.       // Singleton is already unlinked
  492.       assert(N.Next == SMSNode::INVALID && "Singleton has next?");
  493.       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
  494.     }
  495.  
  496.     if (isHead(N)) {
  497.       // If we're the head, then update the sparse array and our next.
  498.       Sparse[sparseIndex(N)] = N.Next;
  499.       Dense[N.Next].Prev = N.Prev;
  500.       return iterator(this, N.Next, ValIndexOf(N.Data));
  501.     }
  502.  
  503.     if (N.isTail()) {
  504.       // If we're the tail, then update our head and our previous.
  505.       findIndex(sparseIndex(N)).setPrev(N.Prev);
  506.       Dense[N.Prev].Next = N.Next;
  507.  
  508.       // Give back an end iterator that can be decremented
  509.       iterator I(this, N.Prev, ValIndexOf(N.Data));
  510.       return ++I;
  511.     }
  512.  
  513.     // Otherwise, just drop us
  514.     Dense[N.Next].Prev = N.Prev;
  515.     Dense[N.Prev].Next = N.Next;
  516.     return iterator(this, N.Next, ValIndexOf(N.Data));
  517.   }
  518. };
  519.  
  520. } // end namespace llvm
  521.  
  522. #endif // LLVM_ADT_SPARSEMULTISET_H
  523.