- //===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// 
- /// \file 
- /// This file defines the SparseMultiSet class, which adds multiset behavior to 
- /// the SparseSet. 
- /// 
- /// A sparse multiset holds a small number of objects identified by integer keys 
- /// from a moderately sized universe. The sparse multiset uses more memory than 
- /// other containers in order to provide faster operations. Any key can map to 
- /// multiple values. A SparseMultiSetNode class is provided, which serves as a 
- /// convenient base class for the contents of a SparseMultiSet. 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ADT_SPARSEMULTISET_H 
- #define LLVM_ADT_SPARSEMULTISET_H 
-   
- #include "llvm/ADT/identity.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/ADT/SparseSet.h" 
- #include <cassert> 
- #include <cstdint> 
- #include <cstdlib> 
- #include <iterator> 
- #include <limits> 
- #include <utility> 
-   
- namespace llvm { 
-   
- /// Fast multiset implementation for objects that can be identified by small 
- /// unsigned keys. 
- /// 
- /// SparseMultiSet allocates memory proportional to the size of the key 
- /// universe, so it is not recommended for building composite data structures. 
- /// It is useful for algorithms that require a single set with fast operations. 
- /// 
- /// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time 
- /// fast clear() as fast as a vector.  The find(), insert(), and erase() 
- /// operations are all constant time, and typically faster than a hash table. 
- /// The iteration order doesn't depend on numerical key values, it only depends 
- /// on the order of insert() and erase() operations.  Iteration order is the 
- /// insertion order. Iteration is only provided over elements of equivalent 
- /// keys, but iterators are bidirectional. 
- /// 
- /// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but 
- /// offers constant-time clear() and size() operations as well as fast iteration 
- /// independent on the size of the universe. 
- /// 
- /// SparseMultiSet contains a dense vector holding all the objects and a sparse 
- /// array holding indexes into the dense vector.  Most of the memory is used by 
- /// the sparse array which is the size of the key universe. The SparseT template 
- /// parameter provides a space/speed tradeoff for sets holding many elements. 
- /// 
- /// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the 
- /// sparse array uses 4 x Universe bytes. 
- /// 
- /// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache 
- /// lines, but the sparse array is 4x smaller.  N is the number of elements in 
- /// the set. 
- /// 
- /// For sets that may grow to thousands of elements, SparseT should be set to 
- /// uint16_t or uint32_t. 
- /// 
- /// Multiset behavior is provided by providing doubly linked lists for values 
- /// that are inlined in the dense vector. SparseMultiSet is a good choice when 
- /// one desires a growable number of entries per key, as it will retain the 
- /// SparseSet algorithmic properties despite being growable. Thus, it is often a 
- /// better choice than a SparseSet of growable containers or a vector of 
- /// vectors. SparseMultiSet also keeps iterators valid after erasure (provided 
- /// the iterators don't point to the element erased), allowing for more 
- /// intuitive and fast removal. 
- /// 
- /// @tparam ValueT      The type of objects in the set. 
- /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 
- /// @tparam SparseT     An unsigned integer type. See above. 
- /// 
- template<typename ValueT, 
-          typename KeyFunctorT = identity<unsigned>, 
-          typename SparseT = uint8_t> 
- class SparseMultiSet { 
-   static_assert(std::is_unsigned_v<SparseT>, 
-                 "SparseT must be an unsigned integer type"); 
-   
-   /// The actual data that's stored, as a doubly-linked list implemented via 
-   /// indices into the DenseVector.  The doubly linked list is implemented 
-   /// circular in Prev indices, and INVALID-terminated in Next indices. This 
-   /// provides efficient access to list tails. These nodes can also be 
-   /// tombstones, in which case they are actually nodes in a single-linked 
-   /// freelist of recyclable slots. 
-   struct SMSNode { 
-     static constexpr unsigned INVALID = ~0U; 
-   
-     ValueT Data; 
-     unsigned Prev; 
-     unsigned Next; 
-   
-     SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {} 
-   
-     /// List tails have invalid Nexts. 
-     bool isTail() const { 
-       return Next == INVALID; 
-     } 
-   
-     /// Whether this node is a tombstone node, and thus is in our freelist. 
-     bool isTombstone() const { 
-       return Prev == INVALID; 
-     } 
-   
-     /// Since the list is circular in Prev, all non-tombstone nodes have a valid 
-     /// Prev. 
-     bool isValid() const { return Prev != INVALID; } 
-   }; 
-   
-   using KeyT = typename KeyFunctorT::argument_type; 
-   using DenseT = SmallVector<SMSNode, 8>; 
-   DenseT Dense; 
-   SparseT *Sparse = nullptr; 
-   unsigned Universe = 0; 
-   KeyFunctorT KeyIndexOf; 
-   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 
-   
-   /// We have a built-in recycler for reusing tombstone slots. This recycler 
-   /// puts a singly-linked free list into tombstone slots, allowing us quick 
-   /// erasure, iterator preservation, and dense size. 
-   unsigned FreelistIdx = SMSNode::INVALID; 
-   unsigned NumFree = 0; 
-   
-   unsigned sparseIndex(const ValueT &Val) const { 
-     assert(ValIndexOf(Val) < Universe && 
-            "Invalid key in set. Did object mutate?"); 
-     return ValIndexOf(Val); 
-   } 
-   unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); } 
-   
-   /// Whether the given entry is the head of the list. List heads's previous 
-   /// pointers are to the tail of the list, allowing for efficient access to the 
-   /// list tail. D must be a valid entry node. 
-   bool isHead(const SMSNode &D) const { 
-     assert(D.isValid() && "Invalid node for head"); 
-     return Dense[D.Prev].isTail(); 
-   } 
-   
-   /// Whether the given entry is a singleton entry, i.e. the only entry with 
-   /// that key. 
-   bool isSingleton(const SMSNode &N) const { 
-     assert(N.isValid() && "Invalid node for singleton"); 
-     // Is N its own predecessor? 
-     return &Dense[N.Prev] == &N; 
-   } 
-   
-   /// Add in the given SMSNode. Uses a free entry in our freelist if 
-   /// available. Returns the index of the added node. 
-   unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) { 
-     if (NumFree == 0) { 
-       Dense.push_back(SMSNode(V, Prev, Next)); 
-       return Dense.size() - 1; 
-     } 
-   
-     // Peel off a free slot 
-     unsigned Idx = FreelistIdx; 
-     unsigned NextFree = Dense[Idx].Next; 
-     assert(Dense[Idx].isTombstone() && "Non-tombstone free?"); 
-   
-     Dense[Idx] = SMSNode(V, Prev, Next); 
-     FreelistIdx = NextFree; 
-     --NumFree; 
-     return Idx; 
-   } 
-   
-   /// Make the current index a new tombstone. Pushes it onto the freelist. 
-   void makeTombstone(unsigned Idx) { 
-     Dense[Idx].Prev = SMSNode::INVALID; 
-     Dense[Idx].Next = FreelistIdx; 
-     FreelistIdx = Idx; 
-     ++NumFree; 
-   } 
-   
- public: 
-   using value_type = ValueT; 
-   using reference = ValueT &; 
-   using const_reference = const ValueT &; 
-   using pointer = ValueT *; 
-   using const_pointer = const ValueT *; 
-   using size_type = unsigned; 
-   
-   SparseMultiSet() = default; 
-   SparseMultiSet(const SparseMultiSet &) = delete; 
-   SparseMultiSet &operator=(const SparseMultiSet &) = delete; 
-   ~SparseMultiSet() { free(Sparse); } 
-   
-   /// Set the universe size which determines the largest key the set can hold. 
-   /// The universe must be sized before any elements can be added. 
-   /// 
-   /// @param U Universe size. All object keys must be less than U. 
-   /// 
-   void setUniverse(unsigned U) { 
-     // It's not hard to resize the universe on a non-empty set, but it doesn't 
-     // seem like a likely use case, so we can add that code when we need it. 
-     assert(empty() && "Can only resize universe on an empty map"); 
-     // Hysteresis prevents needless reallocations. 
-     if (U >= Universe/4 && U <= Universe) 
-       return; 
-     free(Sparse); 
-     // The Sparse array doesn't actually need to be initialized, so malloc 
-     // would be enough here, but that will cause tools like valgrind to 
-     // complain about branching on uninitialized data. 
-     Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); 
-     Universe = U; 
-   } 
-   
-   /// Our iterators are iterators over the collection of objects that share a 
-   /// key. 
-   template <typename SMSPtrTy> class iterator_base { 
-     friend class SparseMultiSet; 
-   
-   public: 
-     using iterator_category = std::bidirectional_iterator_tag; 
-     using value_type = ValueT; 
-     using difference_type = std::ptrdiff_t; 
-     using pointer = value_type *; 
-     using reference = value_type &; 
-   
-   private: 
-     SMSPtrTy SMS; 
-     unsigned Idx; 
-     unsigned SparseIdx; 
-   
-     iterator_base(SMSPtrTy P, unsigned I, unsigned SI) 
-       : SMS(P), Idx(I), SparseIdx(SI) {} 
-   
-     /// Whether our iterator has fallen outside our dense vector. 
-     bool isEnd() const { 
-       if (Idx == SMSNode::INVALID) 
-         return true; 
-   
-       assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?"); 
-       return false; 
-     } 
-   
-     /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid 
-     bool isKeyed() const { return SparseIdx < SMS->Universe; } 
-   
-     unsigned Prev() const { return SMS->Dense[Idx].Prev; } 
-     unsigned Next() const { return SMS->Dense[Idx].Next; } 
-   
-     void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; } 
-     void setNext(unsigned N) { SMS->Dense[Idx].Next = N; } 
-   
-   public: 
-     reference operator*() const { 
-       assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx && 
-              "Dereferencing iterator of invalid key or index"); 
-   
-       return SMS->Dense[Idx].Data; 
-     } 
-     pointer operator->() const { return &operator*(); } 
-   
-     /// Comparison operators 
-     bool operator==(const iterator_base &RHS) const { 
-       // end compares equal 
-       if (SMS == RHS.SMS && Idx == RHS.Idx) { 
-         assert((isEnd() || SparseIdx == RHS.SparseIdx) && 
-                "Same dense entry, but different keys?"); 
-         return true; 
-       } 
-   
-       return false; 
-     } 
-   
-     bool operator!=(const iterator_base &RHS) const { 
-       return !operator==(RHS); 
-     } 
-   
-     /// Increment and decrement operators 
-     iterator_base &operator--() { // predecrement - Back up 
-       assert(isKeyed() && "Decrementing an invalid iterator"); 
-       assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) && 
-              "Decrementing head of list"); 
-   
-       // If we're at the end, then issue a new find() 
-       if (isEnd()) 
-         Idx = SMS->findIndex(SparseIdx).Prev(); 
-       else 
-         Idx = Prev(); 
-   
-       return *this; 
-     } 
-     iterator_base &operator++() { // preincrement - Advance 
-       assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator"); 
-       Idx = Next(); 
-       return *this; 
-     } 
-     iterator_base operator--(int) { // postdecrement 
-       iterator_base I(*this); 
-       --*this; 
-       return I; 
-     } 
-     iterator_base operator++(int) { // postincrement 
-       iterator_base I(*this); 
-       ++*this; 
-       return I; 
-     } 
-   }; 
-   
-   using iterator = iterator_base<SparseMultiSet *>; 
-   using const_iterator = iterator_base<const SparseMultiSet *>; 
-   
-   // Convenience types 
-   using RangePair = std::pair<iterator, iterator>; 
-   
-   /// Returns an iterator past this container. Note that such an iterator cannot 
-   /// be decremented, but will compare equal to other end iterators. 
-   iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); } 
-   const_iterator end() const { 
-     return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID); 
-   } 
-   
-   /// Returns true if the set is empty. 
-   /// 
-   /// This is not the same as BitVector::empty(). 
-   /// 
-   bool empty() const { return size() == 0; } 
-   
-   /// Returns the number of elements in the set. 
-   /// 
-   /// This is not the same as BitVector::size() which returns the size of the 
-   /// universe. 
-   /// 
-   size_type size() const { 
-     assert(NumFree <= Dense.size() && "Out-of-bounds free entries"); 
-     return Dense.size() - NumFree; 
-   } 
-   
-   /// Clears the set.  This is a very fast constant time operation. 
-   /// 
-   void clear() { 
-     // Sparse does not need to be cleared, see find(). 
-     Dense.clear(); 
-     NumFree = 0; 
-     FreelistIdx = SMSNode::INVALID; 
-   } 
-   
-   /// Find an element by its index. 
-   /// 
-   /// @param   Idx A valid index to find. 
-   /// @returns An iterator to the element identified by key, or end(). 
-   /// 
-   iterator findIndex(unsigned Idx) { 
-     assert(Idx < Universe && "Key out of range"); 
-     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 
-     for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) { 
-       const unsigned FoundIdx = sparseIndex(Dense[i]); 
-       // Check that we're pointing at the correct entry and that it is the head 
-       // of a valid list. 
-       if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i])) 
-         return iterator(this, i, Idx); 
-       // Stride is 0 when SparseT >= unsigned.  We don't need to loop. 
-       if (!Stride) 
-         break; 
-     } 
-     return end(); 
-   } 
-   
-   /// Find an element by its key. 
-   /// 
-   /// @param   Key A valid key to find. 
-   /// @returns An iterator to the element identified by key, or end(). 
-   /// 
-   iterator find(const KeyT &Key) { 
-     return findIndex(KeyIndexOf(Key)); 
-   } 
-   
-   const_iterator find(const KeyT &Key) const { 
-     iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key)); 
-     return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key)); 
-   } 
-   
-   /// Returns the number of elements identified by Key. This will be linear in 
-   /// the number of elements of that key. 
-   size_type count(const KeyT &Key) const { 
-     unsigned Ret = 0; 
-     for (const_iterator It = find(Key); It != end(); ++It) 
-       ++Ret; 
-   
-     return Ret; 
-   } 
-   
-   /// Returns true if this set contains an element identified by Key. 
-   bool contains(const KeyT &Key) const { 
-     return find(Key) != end(); 
-   } 
-   
-   /// Return the head and tail of the subset's list, otherwise returns end(). 
-   iterator getHead(const KeyT &Key) { return find(Key); } 
-   iterator getTail(const KeyT &Key) { 
-     iterator I = find(Key); 
-     if (I != end()) 
-       I = iterator(this, I.Prev(), KeyIndexOf(Key)); 
-     return I; 
-   } 
-   
-   /// The bounds of the range of items sharing Key K. First member is the head 
-   /// of the list, and the second member is a decrementable end iterator for 
-   /// that key. 
-   RangePair equal_range(const KeyT &K) { 
-     iterator B = find(K); 
-     iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx); 
-     return std::make_pair(B, E); 
-   } 
-   
-   /// Insert a new element at the tail of the subset list. Returns an iterator 
-   /// to the newly added entry. 
-   iterator insert(const ValueT &Val) { 
-     unsigned Idx = sparseIndex(Val); 
-     iterator I = findIndex(Idx); 
-   
-     unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID); 
-   
-     if (I == end()) { 
-       // Make a singleton list 
-       Sparse[Idx] = NodeIdx; 
-       Dense[NodeIdx].Prev = NodeIdx; 
-       return iterator(this, NodeIdx, Idx); 
-     } 
-   
-     // Stick it at the end. 
-     unsigned HeadIdx = I.Idx; 
-     unsigned TailIdx = I.Prev(); 
-     Dense[TailIdx].Next = NodeIdx; 
-     Dense[HeadIdx].Prev = NodeIdx; 
-     Dense[NodeIdx].Prev = TailIdx; 
-   
-     return iterator(this, NodeIdx, Idx); 
-   } 
-   
-   /// Erases an existing element identified by a valid iterator. 
-   /// 
-   /// This invalidates iterators pointing at the same entry, but erase() returns 
-   /// an iterator pointing to the next element in the subset's list. This makes 
-   /// it possible to erase selected elements while iterating over the subset: 
-   /// 
-   ///   tie(I, E) = Set.equal_range(Key); 
-   ///   while (I != E) 
-   ///     if (test(*I)) 
-   ///       I = Set.erase(I); 
-   ///     else 
-   ///       ++I; 
-   /// 
-   /// Note that if the last element in the subset list is erased, this will 
-   /// return an end iterator which can be decremented to get the new tail (if it 
-   /// exists): 
-   /// 
-   ///  tie(B, I) = Set.equal_range(Key); 
-   ///  for (bool isBegin = B == I; !isBegin; /* empty */) { 
-   ///    isBegin = (--I) == B; 
-   ///    if (test(I)) 
-   ///      break; 
-   ///    I = erase(I); 
-   ///  } 
-   iterator erase(iterator I) { 
-     assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() && 
-            "erasing invalid/end/tombstone iterator"); 
-   
-     // First, unlink the node from its list. Then swap the node out with the 
-     // dense vector's last entry 
-     iterator NextI = unlink(Dense[I.Idx]); 
-   
-     // Put in a tombstone. 
-     makeTombstone(I.Idx); 
-   
-     return NextI; 
-   } 
-   
-   /// Erase all elements with the given key. This invalidates all 
-   /// iterators of that key. 
-   void eraseAll(const KeyT &K) { 
-     for (iterator I = find(K); I != end(); /* empty */) 
-       I = erase(I); 
-   } 
-   
- private: 
-   /// Unlink the node from its list. Returns the next node in the list. 
-   iterator unlink(const SMSNode &N) { 
-     if (isSingleton(N)) { 
-       // Singleton is already unlinked 
-       assert(N.Next == SMSNode::INVALID && "Singleton has next?"); 
-       return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data)); 
-     } 
-   
-     if (isHead(N)) { 
-       // If we're the head, then update the sparse array and our next. 
-       Sparse[sparseIndex(N)] = N.Next; 
-       Dense[N.Next].Prev = N.Prev; 
-       return iterator(this, N.Next, ValIndexOf(N.Data)); 
-     } 
-   
-     if (N.isTail()) { 
-       // If we're the tail, then update our head and our previous. 
-       findIndex(sparseIndex(N)).setPrev(N.Prev); 
-       Dense[N.Prev].Next = N.Next; 
-   
-       // Give back an end iterator that can be decremented 
-       iterator I(this, N.Prev, ValIndexOf(N.Data)); 
-       return ++I; 
-     } 
-   
-     // Otherwise, just drop us 
-     Dense[N.Next].Prev = N.Prev; 
-     Dense[N.Prev].Next = N.Next; 
-     return iterator(this, N.Next, ValIndexOf(N.Data)); 
-   } 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_ADT_SPARSEMULTISET_H 
-