//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines the SparseBitVector class.  See the doxygen comment for
 
/// SparseBitVector for more details on the algorithm used.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
 
#define LLVM_ADT_SPARSEBITVECTOR_H
 
 
 
#include "llvm/Support/ErrorHandling.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <cassert>
 
#include <climits>
 
#include <cstring>
 
#include <iterator>
 
#include <list>
 
 
 
namespace llvm {
 
 
 
/// SparseBitVector is an implementation of a bitvector that is sparse by only
 
/// storing the elements that have non-zero bits set.  In order to make this
 
/// fast for the most common cases, SparseBitVector is implemented as a linked
 
/// list of SparseBitVectorElements.  We maintain a pointer to the last
 
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
 
/// to make multiple in-order test/set constant time after the first one is
 
/// executed.  Note that using vectors to store SparseBitVectorElement's does
 
/// not work out very well because it causes insertion in the middle to take
 
/// enormous amounts of time with a large amount of bits.  Other structures that
 
/// have better worst cases for insertion in the middle (various balanced trees,
 
/// etc) do not perform as well in practice as a linked list with this iterator
 
/// kept up to date.  They are also significantly more memory intensive.
 
 
 
template <unsigned ElementSize = 128> struct SparseBitVectorElement {
 
public:
 
  using BitWord = unsigned long;
 
  using size_type = unsigned;
 
  enum {
 
    BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
 
    BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
 
    BITS_PER_ELEMENT = ElementSize
 
  };
 
 
 
private:
 
  // Index of Element in terms of where first bit starts.
 
  unsigned ElementIndex;
 
  BitWord Bits[BITWORDS_PER_ELEMENT];
 
 
 
  SparseBitVectorElement() {
 
    ElementIndex = ~0U;
 
    memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
 
  }
 
 
 
public:
 
  explicit SparseBitVectorElement(unsigned Idx) {
 
    ElementIndex = Idx;
 
    memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
 
  }
 
 
 
  // Comparison.
 
  bool operator==(const SparseBitVectorElement &RHS) const {
 
    if (ElementIndex != RHS.ElementIndex)
 
      return false;
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 
      if (Bits[i] != RHS.Bits[i])
 
        return false;
 
    return true;
 
  }
 
 
 
  bool operator!=(const SparseBitVectorElement &RHS) const {
 
    return !(*this == RHS);
 
  }
 
 
 
  // Return the bits that make up word Idx in our element.
 
  BitWord word(unsigned Idx) const {
 
    assert(Idx < BITWORDS_PER_ELEMENT);
 
    return Bits[Idx];
 
  }
 
 
 
  unsigned index() const {
 
    return ElementIndex;
 
  }
 
 
 
  bool empty() const {
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 
      if (Bits[i])
 
        return false;
 
    return true;
 
  }
 
 
 
  void set(unsigned Idx) {
 
    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
 
  }
 
 
 
  bool test_and_set(unsigned Idx) {
 
    bool old = test(Idx);
 
    if (!old) {
 
      set(Idx);
 
      return true;
 
    }
 
    return false;
 
  }
 
 
 
  void reset(unsigned Idx) {
 
    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
 
  }
 
 
 
  bool test(unsigned Idx) const {
 
    return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
 
  }
 
 
 
  size_type count() const {
 
    unsigned NumBits = 0;
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 
      NumBits += llvm::popcount(Bits[i]);
 
    return NumBits;
 
  }
 
 
 
  /// find_first - Returns the index of the first set bit.
 
  int find_first() const {
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 
      if (Bits[i] != 0)
 
        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
 
    llvm_unreachable("Illegal empty element");
 
  }
 
 
 
  /// find_last - Returns the index of the last set bit.
 
  int find_last() const {
 
    for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) {
 
      unsigned Idx = BITWORDS_PER_ELEMENT - I - 1;
 
      if (Bits[Idx] != 0)
 
        return Idx * BITWORD_SIZE + BITWORD_SIZE -
 
               countLeadingZeros(Bits[Idx]) - 1;
 
    }
 
    llvm_unreachable("Illegal empty element");
 
  }
 
 
 
  /// find_next - Returns the index of the next set bit starting from the
 
  /// "Curr" bit. Returns -1 if the next set bit is not found.
 
  int find_next(unsigned Curr) const {
 
    if (Curr >= BITS_PER_ELEMENT)
 
      return -1;
 
 
 
    unsigned WordPos = Curr / BITWORD_SIZE;
 
    unsigned BitPos = Curr % BITWORD_SIZE;
 
    BitWord Copy = Bits[WordPos];
 
    assert(WordPos <= BITWORDS_PER_ELEMENT
 
           && "Word Position outside of element");
 
 
 
    // Mask off previous bits.
 
    Copy &= ~0UL << BitPos;
 
 
 
    if (Copy != 0)
 
      return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
 
 
 
    // Check subsequent words.
 
    for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
 
      if (Bits[i] != 0)
 
        return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
 
    return -1;
 
  }
 
 
 
  // Union this element with RHS and return true if this one changed.
 
  bool unionWith(const SparseBitVectorElement &RHS) {
 
    bool changed = false;
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 
      BitWord old = changed ? 0 : Bits[i];
 
 
 
      Bits[i] |= RHS.Bits[i];
 
      if (!changed && old != Bits[i])
 
        changed = true;
 
    }
 
    return changed;
 
  }
 
 
 
  // Return true if we have any bits in common with RHS
 
  bool intersects(const SparseBitVectorElement &RHS) const {
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 
      if (RHS.Bits[i] & Bits[i])
 
        return true;
 
    }
 
    return false;
 
  }
 
 
 
  // Intersect this Element with RHS and return true if this one changed.
 
  // BecameZero is set to true if this element became all-zero bits.
 
  bool intersectWith(const SparseBitVectorElement &RHS,
 
                     bool &BecameZero) {
 
    bool changed = false;
 
    bool allzero = true;
 
 
 
    BecameZero = false;
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 
      BitWord old = changed ? 0 : Bits[i];
 
 
 
      Bits[i] &= RHS.Bits[i];
 
      if (Bits[i] != 0)
 
        allzero = false;
 
 
 
      if (!changed && old != Bits[i])
 
        changed = true;
 
    }
 
    BecameZero = allzero;
 
    return changed;
 
  }
 
 
 
  // Intersect this Element with the complement of RHS and return true if this
 
  // one changed.  BecameZero is set to true if this element became all-zero
 
  // bits.
 
  bool intersectWithComplement(const SparseBitVectorElement &RHS,
 
                               bool &BecameZero) {
 
    bool changed = false;
 
    bool allzero = true;
 
 
 
    BecameZero = false;
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 
      BitWord old = changed ? 0 : Bits[i];
 
 
 
      Bits[i] &= ~RHS.Bits[i];
 
      if (Bits[i] != 0)
 
        allzero = false;
 
 
 
      if (!changed && old != Bits[i])
 
        changed = true;
 
    }
 
    BecameZero = allzero;
 
    return changed;
 
  }
 
 
 
  // Three argument version of intersectWithComplement that intersects
 
  // RHS1 & ~RHS2 into this element
 
  void intersectWithComplement(const SparseBitVectorElement &RHS1,
 
                               const SparseBitVectorElement &RHS2,
 
                               bool &BecameZero) {
 
    bool allzero = true;
 
 
 
    BecameZero = false;
 
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 
      Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
 
      if (Bits[i] != 0)
 
        allzero = false;
 
    }
 
    BecameZero = allzero;
 
  }
 
};
 
 
 
template <unsigned ElementSize = 128>
 
class SparseBitVector {
 
  using ElementList = std::list<SparseBitVectorElement<ElementSize>>;
 
  using ElementListIter = typename ElementList::iterator;
 
  using ElementListConstIter = typename ElementList::const_iterator;
 
  enum {
 
    BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
 
  };
 
 
 
  ElementList Elements;
 
  // Pointer to our current Element. This has no visible effect on the external
 
  // state of a SparseBitVector, it's just used to improve performance in the
 
  // common case of testing/modifying bits with similar indices.
 
  mutable ElementListIter CurrElementIter;
 
 
 
  // This is like std::lower_bound, except we do linear searching from the
 
  // current position.
 
  ElementListIter FindLowerBoundImpl(unsigned ElementIndex) const {
 
 
 
    // We cache a non-const iterator so we're forced to resort to const_cast to
 
    // get the begin/end in the case where 'this' is const. To avoid duplication
 
    // of code with the only difference being whether the const cast is present
 
    // 'this' is always const in this particular function and we sort out the
 
    // difference in FindLowerBound and FindLowerBoundConst.
 
    ElementListIter Begin =
 
        const_cast<SparseBitVector<ElementSize> *>(this)->Elements.begin();
 
    ElementListIter End =
 
        const_cast<SparseBitVector<ElementSize> *>(this)->Elements.end();
 
 
 
    if (Elements.empty()) {
 
      CurrElementIter = Begin;
 
      return CurrElementIter;
 
    }
 
 
 
    // Make sure our current iterator is valid.
 
    if (CurrElementIter == End)
 
      --CurrElementIter;
 
 
 
    // Search from our current iterator, either backwards or forwards,
 
    // depending on what element we are looking for.
 
    ElementListIter ElementIter = CurrElementIter;
 
    if (CurrElementIter->index() == ElementIndex) {
 
      return ElementIter;
 
    } else if (CurrElementIter->index() > ElementIndex) {
 
      while (ElementIter != Begin
 
             && ElementIter->index() > ElementIndex)
 
        --ElementIter;
 
    } else {
 
      while (ElementIter != End &&
 
             ElementIter->index() < ElementIndex)
 
        ++ElementIter;
 
    }
 
    CurrElementIter = ElementIter;
 
    return ElementIter;
 
  }
 
  ElementListConstIter FindLowerBoundConst(unsigned ElementIndex) const {
 
    return FindLowerBoundImpl(ElementIndex);
 
  }
 
  ElementListIter FindLowerBound(unsigned ElementIndex) {
 
    return FindLowerBoundImpl(ElementIndex);
 
  }
 
 
 
  // Iterator to walk set bits in the bitmap.  This iterator is a lot uglier
 
  // than it would be, in order to be efficient.
 
  class SparseBitVectorIterator {
 
  private:
 
    bool AtEnd;
 
 
 
    const SparseBitVector<ElementSize> *BitVector = nullptr;
 
 
 
    // Current element inside of bitmap.
 
    ElementListConstIter Iter;
 
 
 
    // Current bit number inside of our bitmap.
 
    unsigned BitNumber;
 
 
 
    // Current word number inside of our element.
 
    unsigned WordNumber;
 
 
 
    // Current bits from the element.
 
    typename SparseBitVectorElement<ElementSize>::BitWord Bits;
 
 
 
    // Move our iterator to the first non-zero bit in the bitmap.
 
    void AdvanceToFirstNonZero() {
 
      if (AtEnd)
 
        return;
 
      if (BitVector->Elements.empty()) {
 
        AtEnd = true;
 
        return;
 
      }
 
      Iter = BitVector->Elements.begin();
 
      BitNumber = Iter->index() * ElementSize;
 
      unsigned BitPos = Iter->find_first();
 
      BitNumber += BitPos;
 
      WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
 
      Bits = Iter->word(WordNumber);
 
      Bits >>= BitPos % BITWORD_SIZE;
 
    }
 
 
 
    // Move our iterator to the next non-zero bit.
 
    void AdvanceToNextNonZero() {
 
      if (AtEnd)
 
        return;
 
 
 
      while (Bits && !(Bits & 1)) {
 
        Bits >>= 1;
 
        BitNumber += 1;
 
      }
 
 
 
      // See if we ran out of Bits in this word.
 
      if (!Bits) {
 
        int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
 
        // If we ran out of set bits in this element, move to next element.
 
        if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
 
          ++Iter;
 
          WordNumber = 0;
 
 
 
          // We may run out of elements in the bitmap.
 
          if (Iter == BitVector->Elements.end()) {
 
            AtEnd = true;
 
            return;
 
          }
 
          // Set up for next non-zero word in bitmap.
 
          BitNumber = Iter->index() * ElementSize;
 
          NextSetBitNumber = Iter->find_first();
 
          BitNumber += NextSetBitNumber;
 
          WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
 
          Bits = Iter->word(WordNumber);
 
          Bits >>= NextSetBitNumber % BITWORD_SIZE;
 
        } else {
 
          WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
 
          Bits = Iter->word(WordNumber);
 
          Bits >>= NextSetBitNumber % BITWORD_SIZE;
 
          BitNumber = Iter->index() * ElementSize;
 
          BitNumber += NextSetBitNumber;
 
        }
 
      }
 
    }
 
 
 
  public:
 
    SparseBitVectorIterator() = default;
 
 
 
    SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
 
                            bool end = false):BitVector(RHS) {
 
      Iter = BitVector->Elements.begin();
 
      BitNumber = 0;
 
      Bits = 0;
 
      WordNumber = ~0;
 
      AtEnd = end;
 
      AdvanceToFirstNonZero();
 
    }
 
 
 
    // Preincrement.
 
    inline SparseBitVectorIterator& operator++() {
 
      ++BitNumber;
 
      Bits >>= 1;
 
      AdvanceToNextNonZero();
 
      return *this;
 
    }
 
 
 
    // Postincrement.
 
    inline SparseBitVectorIterator operator++(int) {
 
      SparseBitVectorIterator tmp = *this;
 
      ++*this;
 
      return tmp;
 
    }
 
 
 
    // Return the current set bit number.
 
    unsigned operator*() const {
 
      return BitNumber;
 
    }
 
 
 
    bool operator==(const SparseBitVectorIterator &RHS) const {
 
      // If they are both at the end, ignore the rest of the fields.
 
      if (AtEnd && RHS.AtEnd)
 
        return true;
 
      // Otherwise they are the same if they have the same bit number and
 
      // bitmap.
 
      return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
 
    }
 
 
 
    bool operator!=(const SparseBitVectorIterator &RHS) const {
 
      return !(*this == RHS);
 
    }
 
  };
 
 
 
public:
 
  using iterator = SparseBitVectorIterator;
 
 
 
  SparseBitVector() : Elements(), CurrElementIter(Elements.begin()) {}
 
 
 
  SparseBitVector(const SparseBitVector &RHS)
 
      : Elements(RHS.Elements), CurrElementIter(Elements.begin()) {}
 
  SparseBitVector(SparseBitVector &&RHS)
 
      : Elements(std::move(RHS.Elements)), CurrElementIter(Elements.begin()) {}
 
 
 
  // Clear.
 
  void clear() {
 
    Elements.clear();
 
  }
 
 
 
  // Assignment
 
  SparseBitVector& operator=(const SparseBitVector& RHS) {
 
    if (this == &RHS)
 
      return *this;
 
 
 
    Elements = RHS.Elements;
 
    CurrElementIter = Elements.begin();
 
    return *this;
 
  }
 
  SparseBitVector &operator=(SparseBitVector &&RHS) {
 
    Elements = std::move(RHS.Elements);
 
    CurrElementIter = Elements.begin();
 
    return *this;
 
  }
 
 
 
  // Test, Reset, and Set a bit in the bitmap.
 
  bool test(unsigned Idx) const {
 
    if (Elements.empty())
 
      return false;
 
 
 
    unsigned ElementIndex = Idx / ElementSize;
 
    ElementListConstIter ElementIter = FindLowerBoundConst(ElementIndex);
 
 
 
    // If we can't find an element that is supposed to contain this bit, there
 
    // is nothing more to do.
 
    if (ElementIter == Elements.end() ||
 
        ElementIter->index() != ElementIndex)
 
      return false;
 
    return ElementIter->test(Idx % ElementSize);
 
  }
 
 
 
  void reset(unsigned Idx) {
 
    if (Elements.empty())
 
      return;
 
 
 
    unsigned ElementIndex = Idx / ElementSize;
 
    ElementListIter ElementIter = FindLowerBound(ElementIndex);
 
 
 
    // If we can't find an element that is supposed to contain this bit, there
 
    // is nothing more to do.
 
    if (ElementIter == Elements.end() ||
 
        ElementIter->index() != ElementIndex)
 
      return;
 
    ElementIter->reset(Idx % ElementSize);
 
 
 
    // When the element is zeroed out, delete it.
 
    if (ElementIter->empty()) {
 
      ++CurrElementIter;
 
      Elements.erase(ElementIter);
 
    }
 
  }
 
 
 
  void set(unsigned Idx) {
 
    unsigned ElementIndex = Idx / ElementSize;
 
    ElementListIter ElementIter;
 
    if (Elements.empty()) {
 
      ElementIter = Elements.emplace(Elements.end(), ElementIndex);
 
    } else {
 
      ElementIter = FindLowerBound(ElementIndex);
 
 
 
      if (ElementIter == Elements.end() ||
 
          ElementIter->index() != ElementIndex) {
 
        // We may have hit the beginning of our SparseBitVector, in which case,
 
        // we may need to insert right after this element, which requires moving
 
        // the current iterator forward one, because insert does insert before.
 
        if (ElementIter != Elements.end() &&
 
            ElementIter->index() < ElementIndex)
 
          ++ElementIter;
 
        ElementIter = Elements.emplace(ElementIter, ElementIndex);
 
      }
 
    }
 
    CurrElementIter = ElementIter;
 
 
 
    ElementIter->set(Idx % ElementSize);
 
  }
 
 
 
  bool test_and_set(unsigned Idx) {
 
    bool old = test(Idx);
 
    if (!old) {
 
      set(Idx);
 
      return true;
 
    }
 
    return false;
 
  }
 
 
 
  bool operator!=(const SparseBitVector &RHS) const {
 
    return !(*this == RHS);
 
  }
 
 
 
  bool operator==(const SparseBitVector &RHS) const {
 
    ElementListConstIter Iter1 = Elements.begin();
 
    ElementListConstIter Iter2 = RHS.Elements.begin();
 
 
 
    for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
 
         ++Iter1, ++Iter2) {
 
      if (*Iter1 != *Iter2)
 
        return false;
 
    }
 
    return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
 
  }
 
 
 
  // Union our bitmap with the RHS and return true if we changed.
 
  bool operator|=(const SparseBitVector &RHS) {
 
    if (this == &RHS)
 
      return false;
 
 
 
    bool changed = false;
 
    ElementListIter Iter1 = Elements.begin();
 
    ElementListConstIter Iter2 = RHS.Elements.begin();
 
 
 
    // If RHS is empty, we are done
 
    if (RHS.Elements.empty())
 
      return false;
 
 
 
    while (Iter2 != RHS.Elements.end()) {
 
      if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
 
        Elements.insert(Iter1, *Iter2);
 
        ++Iter2;
 
        changed = true;
 
      } else if (Iter1->index() == Iter2->index()) {
 
        changed |= Iter1->unionWith(*Iter2);
 
        ++Iter1;
 
        ++Iter2;
 
      } else {
 
        ++Iter1;
 
      }
 
    }
 
    CurrElementIter = Elements.begin();
 
    return changed;
 
  }
 
 
 
  // Intersect our bitmap with the RHS and return true if ours changed.
 
  bool operator&=(const SparseBitVector &RHS) {
 
    if (this == &RHS)
 
      return false;
 
 
 
    bool changed = false;
 
    ElementListIter Iter1 = Elements.begin();
 
    ElementListConstIter Iter2 = RHS.Elements.begin();
 
 
 
    // Check if both bitmaps are empty.
 
    if (Elements.empty() && RHS.Elements.empty())
 
      return false;
 
 
 
    // Loop through, intersecting as we go, erasing elements when necessary.
 
    while (Iter2 != RHS.Elements.end()) {
 
      if (Iter1 == Elements.end()) {
 
        CurrElementIter = Elements.begin();
 
        return changed;
 
      }
 
 
 
      if (Iter1->index() > Iter2->index()) {
 
        ++Iter2;
 
      } else if (Iter1->index() == Iter2->index()) {
 
        bool BecameZero;
 
        changed |= Iter1->intersectWith(*Iter2, BecameZero);
 
        if (BecameZero) {
 
          ElementListIter IterTmp = Iter1;
 
          ++Iter1;
 
          Elements.erase(IterTmp);
 
        } else {
 
          ++Iter1;
 
        }
 
        ++Iter2;
 
      } else {
 
        ElementListIter IterTmp = Iter1;
 
        ++Iter1;
 
        Elements.erase(IterTmp);
 
        changed = true;
 
      }
 
    }
 
    if (Iter1 != Elements.end()) {
 
      Elements.erase(Iter1, Elements.end());
 
      changed = true;
 
    }
 
    CurrElementIter = Elements.begin();
 
    return changed;
 
  }
 
 
 
  // Intersect our bitmap with the complement of the RHS and return true
 
  // if ours changed.
 
  bool intersectWithComplement(const SparseBitVector &RHS) {
 
    if (this == &RHS) {
 
      if (!empty()) {
 
        clear();
 
        return true;
 
      }
 
      return false;
 
    }
 
 
 
    bool changed = false;
 
    ElementListIter Iter1 = Elements.begin();
 
    ElementListConstIter Iter2 = RHS.Elements.begin();
 
 
 
    // If either our bitmap or RHS is empty, we are done
 
    if (Elements.empty() || RHS.Elements.empty())
 
      return false;
 
 
 
    // Loop through, intersecting as we go, erasing elements when necessary.
 
    while (Iter2 != RHS.Elements.end()) {
 
      if (Iter1 == Elements.end()) {
 
        CurrElementIter = Elements.begin();
 
        return changed;
 
      }
 
 
 
      if (Iter1->index() > Iter2->index()) {
 
        ++Iter2;
 
      } else if (Iter1->index() == Iter2->index()) {
 
        bool BecameZero;
 
        changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
 
        if (BecameZero) {
 
          ElementListIter IterTmp = Iter1;
 
          ++Iter1;
 
          Elements.erase(IterTmp);
 
        } else {
 
          ++Iter1;
 
        }
 
        ++Iter2;
 
      } else {
 
        ++Iter1;
 
      }
 
    }
 
    CurrElementIter = Elements.begin();
 
    return changed;
 
  }
 
 
 
  bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
 
    return intersectWithComplement(*RHS);
 
  }
 
 
 
  //  Three argument version of intersectWithComplement.
 
  //  Result of RHS1 & ~RHS2 is stored into this bitmap.
 
  void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
 
                               const SparseBitVector<ElementSize> &RHS2)
 
  {
 
    if (this == &RHS1) {
 
      intersectWithComplement(RHS2);
 
      return;
 
    } else if (this == &RHS2) {
 
      SparseBitVector RHS2Copy(RHS2);
 
      intersectWithComplement(RHS1, RHS2Copy);
 
      return;
 
    }
 
 
 
    Elements.clear();
 
    CurrElementIter = Elements.begin();
 
    ElementListConstIter Iter1 = RHS1.Elements.begin();
 
    ElementListConstIter Iter2 = RHS2.Elements.begin();
 
 
 
    // If RHS1 is empty, we are done
 
    // If RHS2 is empty, we still have to copy RHS1
 
    if (RHS1.Elements.empty())
 
      return;
 
 
 
    // Loop through, intersecting as we go, erasing elements when necessary.
 
    while (Iter2 != RHS2.Elements.end()) {
 
      if (Iter1 == RHS1.Elements.end())
 
        return;
 
 
 
      if (Iter1->index() > Iter2->index()) {
 
        ++Iter2;
 
      } else if (Iter1->index() == Iter2->index()) {
 
        bool BecameZero = false;
 
        Elements.emplace_back(Iter1->index());
 
        Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero);
 
        if (BecameZero)
 
          Elements.pop_back();
 
        ++Iter1;
 
        ++Iter2;
 
      } else {
 
        Elements.push_back(*Iter1++);
 
      }
 
    }
 
 
 
    // copy the remaining elements
 
    std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements));
 
  }
 
 
 
  void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
 
                               const SparseBitVector<ElementSize> *RHS2) {
 
    intersectWithComplement(*RHS1, *RHS2);
 
  }
 
 
 
  bool intersects(const SparseBitVector<ElementSize> *RHS) const {
 
    return intersects(*RHS);
 
  }
 
 
 
  // Return true if we share any bits in common with RHS
 
  bool intersects(const SparseBitVector<ElementSize> &RHS) const {
 
    ElementListConstIter Iter1 = Elements.begin();
 
    ElementListConstIter Iter2 = RHS.Elements.begin();
 
 
 
    // Check if both bitmaps are empty.
 
    if (Elements.empty() && RHS.Elements.empty())
 
      return false;
 
 
 
    // Loop through, intersecting stopping when we hit bits in common.
 
    while (Iter2 != RHS.Elements.end()) {
 
      if (Iter1 == Elements.end())
 
        return false;
 
 
 
      if (Iter1->index() > Iter2->index()) {
 
        ++Iter2;
 
      } else if (Iter1->index() == Iter2->index()) {
 
        if (Iter1->intersects(*Iter2))
 
          return true;
 
        ++Iter1;
 
        ++Iter2;
 
      } else {
 
        ++Iter1;
 
      }
 
    }
 
    return false;
 
  }
 
 
 
  // Return true iff all bits set in this SparseBitVector are
 
  // also set in RHS.
 
  bool contains(const SparseBitVector<ElementSize> &RHS) const {
 
    SparseBitVector<ElementSize> Result(*this);
 
    Result &= RHS;
 
    return (Result == RHS);
 
  }
 
 
 
  // Return the first set bit in the bitmap.  Return -1 if no bits are set.
 
  int find_first() const {
 
    if (Elements.empty())
 
      return -1;
 
    const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
 
    return (First.index() * ElementSize) + First.find_first();
 
  }
 
 
 
  // Return the last set bit in the bitmap.  Return -1 if no bits are set.
 
  int find_last() const {
 
    if (Elements.empty())
 
      return -1;
 
    const SparseBitVectorElement<ElementSize> &Last = *(Elements.rbegin());
 
    return (Last.index() * ElementSize) + Last.find_last();
 
  }
 
 
 
  // Return true if the SparseBitVector is empty
 
  bool empty() const {
 
    return Elements.empty();
 
  }
 
 
 
  unsigned count() const {
 
    unsigned BitCount = 0;
 
    for (ElementListConstIter Iter = Elements.begin();
 
         Iter != Elements.end();
 
         ++Iter)
 
      BitCount += Iter->count();
 
 
 
    return BitCount;
 
  }
 
 
 
  iterator begin() const {
 
    return iterator(this);
 
  }
 
 
 
  iterator end() const {
 
    return iterator(this, true);
 
  }
 
};
 
 
 
// Convenience functions to allow Or and And without dereferencing in the user
 
// code.
 
 
 
template <unsigned ElementSize>
 
inline bool operator |=(SparseBitVector<ElementSize> &LHS,
 
                        const SparseBitVector<ElementSize> *RHS) {
 
  return LHS |= *RHS;
 
}
 
 
 
template <unsigned ElementSize>
 
inline bool operator |=(SparseBitVector<ElementSize> *LHS,
 
                        const SparseBitVector<ElementSize> &RHS) {
 
  return LHS->operator|=(RHS);
 
}
 
 
 
template <unsigned ElementSize>
 
inline bool operator &=(SparseBitVector<ElementSize> *LHS,
 
                        const SparseBitVector<ElementSize> &RHS) {
 
  return LHS->operator&=(RHS);
 
}
 
 
 
template <unsigned ElementSize>
 
inline bool operator &=(SparseBitVector<ElementSize> &LHS,
 
                        const SparseBitVector<ElementSize> *RHS) {
 
  return LHS &= *RHS;
 
}
 
 
 
// Convenience functions for infix union, intersection, difference operators.
 
 
 
template <unsigned ElementSize>
 
inline SparseBitVector<ElementSize>
 
operator|(const SparseBitVector<ElementSize> &LHS,
 
          const SparseBitVector<ElementSize> &RHS) {
 
  SparseBitVector<ElementSize> Result(LHS);
 
  Result |= RHS;
 
  return Result;
 
}
 
 
 
template <unsigned ElementSize>
 
inline SparseBitVector<ElementSize>
 
operator&(const SparseBitVector<ElementSize> &LHS,
 
          const SparseBitVector<ElementSize> &RHS) {
 
  SparseBitVector<ElementSize> Result(LHS);
 
  Result &= RHS;
 
  return Result;
 
}
 
 
 
template <unsigned ElementSize>
 
inline SparseBitVector<ElementSize>
 
operator-(const SparseBitVector<ElementSize> &LHS,
 
          const SparseBitVector<ElementSize> &RHS) {
 
  SparseBitVector<ElementSize> Result;
 
  Result.intersectWithComplement(LHS, RHS);
 
  return Result;
 
}
 
 
 
// Dump a SparseBitVector to a stream
 
template <unsigned ElementSize>
 
void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
 
  out << "[";
 
 
 
  typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
 
    be = LHS.end();
 
  if (bi != be) {
 
    out << *bi;
 
    for (++bi; bi != be; ++bi) {
 
      out << " " << *bi;
 
    }
 
  }
 
  out << "]\n";
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_SPARSEBITVECTOR_H