Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// \file
  10. /// This file defines the SmallVector class.
  11. ///
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_ADT_SMALLVECTOR_H
  15. #define LLVM_ADT_SMALLVECTOR_H
  16.  
  17. #include "llvm/Support/Compiler.h"
  18. #include "llvm/Support/type_traits.h"
  19. #include <algorithm>
  20. #include <cassert>
  21. #include <cstddef>
  22. #include <cstdlib>
  23. #include <cstring>
  24. #include <functional>
  25. #include <initializer_list>
  26. #include <iterator>
  27. #include <limits>
  28. #include <memory>
  29. #include <new>
  30. #include <type_traits>
  31. #include <utility>
  32.  
  33. namespace llvm {
  34.  
  35. template <typename T> class ArrayRef;
  36.  
  37. template <typename IteratorT> class iterator_range;
  38.  
  39. template <class Iterator>
  40. using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
  41.     typename std::iterator_traits<Iterator>::iterator_category,
  42.     std::input_iterator_tag>::value>;
  43.  
  44. /// This is all the stuff common to all SmallVectors.
  45. ///
  46. /// The template parameter specifies the type which should be used to hold the
  47. /// Size and Capacity of the SmallVector, so it can be adjusted.
  48. /// Using 32 bit size is desirable to shrink the size of the SmallVector.
  49. /// Using 64 bit size is desirable for cases like SmallVector<char>, where a
  50. /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
  51. /// buffering bitcode output - which can exceed 4GB.
  52. template <class Size_T> class SmallVectorBase {
  53. protected:
  54.   void *BeginX;
  55.   Size_T Size = 0, Capacity;
  56.  
  57.   /// The maximum value of the Size_T used.
  58.   static constexpr size_t SizeTypeMax() {
  59.     return std::numeric_limits<Size_T>::max();
  60.   }
  61.  
  62.   SmallVectorBase() = delete;
  63.   SmallVectorBase(void *FirstEl, size_t TotalCapacity)
  64.       : BeginX(FirstEl), Capacity(TotalCapacity) {}
  65.  
  66.   /// This is a helper for \a grow() that's out of line to reduce code
  67.   /// duplication.  This function will report a fatal error if it can't grow at
  68.   /// least to \p MinSize.
  69.   void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
  70.                       size_t &NewCapacity);
  71.  
  72.   /// This is an implementation of the grow() method which only works
  73.   /// on POD-like data types and is out of line to reduce code duplication.
  74.   /// This function will report a fatal error if it cannot increase capacity.
  75.   void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
  76.  
  77.   /// If vector was first created with capacity 0, getFirstEl() points to the
  78.   /// memory right after, an area unallocated. If a subsequent allocation,
  79.   /// that grows the vector, happens to return the same pointer as getFirstEl(),
  80.   /// get a new allocation, otherwise isSmall() will falsely return that no
  81.   /// allocation was done (true) and the memory will not be freed in the
  82.   /// destructor. If a VSize is given (vector size), also copy that many
  83.   /// elements to the new allocation - used if realloca fails to increase
  84.   /// space, and happens to allocate precisely at BeginX.
  85.   /// This is unlikely to be called often, but resolves a memory leak when the
  86.   /// situation does occur.
  87.   void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
  88.                           size_t VSize = 0);
  89.  
  90. public:
  91.   size_t size() const { return Size; }
  92.   size_t capacity() const { return Capacity; }
  93.  
  94.   [[nodiscard]] bool empty() const { return !Size; }
  95.  
  96. protected:
  97.   /// Set the array size to \p N, which the current array must have enough
  98.   /// capacity for.
  99.   ///
  100.   /// This does not construct or destroy any elements in the vector.
  101.   void set_size(size_t N) {
  102.     assert(N <= capacity());
  103.     Size = N;
  104.   }
  105. };
  106.  
  107. template <class T>
  108. using SmallVectorSizeType =
  109.     std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
  110.                        uint32_t>;
  111.  
  112. /// Figure out the offset of the first element.
  113. template <class T, typename = void> struct SmallVectorAlignmentAndSize {
  114.   alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
  115.       SmallVectorBase<SmallVectorSizeType<T>>)];
  116.   alignas(T) char FirstEl[sizeof(T)];
  117. };
  118.  
  119. /// This is the part of SmallVectorTemplateBase which does not depend on whether
  120. /// the type T is a POD. The extra dummy template argument is used by ArrayRef
  121. /// to avoid unnecessarily requiring T to be complete.
  122. template <typename T, typename = void>
  123. class SmallVectorTemplateCommon
  124.     : public SmallVectorBase<SmallVectorSizeType<T>> {
  125.   using Base = SmallVectorBase<SmallVectorSizeType<T>>;
  126.  
  127. protected:
  128.   /// Find the address of the first element.  For this pointer math to be valid
  129.   /// with small-size of 0 for T with lots of alignment, it's important that
  130.   /// SmallVectorStorage is properly-aligned even for small-size of 0.
  131.   void *getFirstEl() const {
  132.     return const_cast<void *>(reinterpret_cast<const void *>(
  133.         reinterpret_cast<const char *>(this) +
  134.         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
  135.   }
  136.   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
  137.  
  138.   SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
  139.  
  140.   void grow_pod(size_t MinSize, size_t TSize) {
  141.     Base::grow_pod(getFirstEl(), MinSize, TSize);
  142.   }
  143.  
  144.   /// Return true if this is a smallvector which has not had dynamic
  145.   /// memory allocated for it.
  146.   bool isSmall() const { return this->BeginX == getFirstEl(); }
  147.  
  148.   /// Put this vector in a state of being small.
  149.   void resetToSmall() {
  150.     this->BeginX = getFirstEl();
  151.     this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
  152.   }
  153.  
  154.   /// Return true if V is an internal reference to the given range.
  155.   bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
  156.     // Use std::less to avoid UB.
  157.     std::less<> LessThan;
  158.     return !LessThan(V, First) && LessThan(V, Last);
  159.   }
  160.  
  161.   /// Return true if V is an internal reference to this vector.
  162.   bool isReferenceToStorage(const void *V) const {
  163.     return isReferenceToRange(V, this->begin(), this->end());
  164.   }
  165.  
  166.   /// Return true if First and Last form a valid (possibly empty) range in this
  167.   /// vector's storage.
  168.   bool isRangeInStorage(const void *First, const void *Last) const {
  169.     // Use std::less to avoid UB.
  170.     std::less<> LessThan;
  171.     return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
  172.            !LessThan(this->end(), Last);
  173.   }
  174.  
  175.   /// Return true unless Elt will be invalidated by resizing the vector to
  176.   /// NewSize.
  177.   bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
  178.     // Past the end.
  179.     if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
  180.       return true;
  181.  
  182.     // Return false if Elt will be destroyed by shrinking.
  183.     if (NewSize <= this->size())
  184.       return Elt < this->begin() + NewSize;
  185.  
  186.     // Return false if we need to grow.
  187.     return NewSize <= this->capacity();
  188.   }
  189.  
  190.   /// Check whether Elt will be invalidated by resizing the vector to NewSize.
  191.   void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
  192.     assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
  193.            "Attempting to reference an element of the vector in an operation "
  194.            "that invalidates it");
  195.   }
  196.  
  197.   /// Check whether Elt will be invalidated by increasing the size of the
  198.   /// vector by N.
  199.   void assertSafeToAdd(const void *Elt, size_t N = 1) {
  200.     this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
  201.   }
  202.  
  203.   /// Check whether any part of the range will be invalidated by clearing.
  204.   void assertSafeToReferenceAfterClear(const T *From, const T *To) {
  205.     if (From == To)
  206.       return;
  207.     this->assertSafeToReferenceAfterResize(From, 0);
  208.     this->assertSafeToReferenceAfterResize(To - 1, 0);
  209.   }
  210.   template <
  211.       class ItTy,
  212.       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
  213.                        bool> = false>
  214.   void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
  215.  
  216.   /// Check whether any part of the range will be invalidated by growing.
  217.   void assertSafeToAddRange(const T *From, const T *To) {
  218.     if (From == To)
  219.       return;
  220.     this->assertSafeToAdd(From, To - From);
  221.     this->assertSafeToAdd(To - 1, To - From);
  222.   }
  223.   template <
  224.       class ItTy,
  225.       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
  226.                        bool> = false>
  227.   void assertSafeToAddRange(ItTy, ItTy) {}
  228.  
  229.   /// Reserve enough space to add one element, and return the updated element
  230.   /// pointer in case it was a reference to the storage.
  231.   template <class U>
  232.   static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
  233.                                                    size_t N) {
  234.     size_t NewSize = This->size() + N;
  235.     if (LLVM_LIKELY(NewSize <= This->capacity()))
  236.       return &Elt;
  237.  
  238.     bool ReferencesStorage = false;
  239.     int64_t Index = -1;
  240.     if (!U::TakesParamByValue) {
  241.       if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
  242.         ReferencesStorage = true;
  243.         Index = &Elt - This->begin();
  244.       }
  245.     }
  246.     This->grow(NewSize);
  247.     return ReferencesStorage ? This->begin() + Index : &Elt;
  248.   }
  249.  
  250. public:
  251.   using size_type = size_t;
  252.   using difference_type = ptrdiff_t;
  253.   using value_type = T;
  254.   using iterator = T *;
  255.   using const_iterator = const T *;
  256.  
  257.   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  258.   using reverse_iterator = std::reverse_iterator<iterator>;
  259.  
  260.   using reference = T &;
  261.   using const_reference = const T &;
  262.   using pointer = T *;
  263.   using const_pointer = const T *;
  264.  
  265.   using Base::capacity;
  266.   using Base::empty;
  267.   using Base::size;
  268.  
  269.   // forward iterator creation methods.
  270.   iterator begin() { return (iterator)this->BeginX; }
  271.   const_iterator begin() const { return (const_iterator)this->BeginX; }
  272.   iterator end() { return begin() + size(); }
  273.   const_iterator end() const { return begin() + size(); }
  274.  
  275.   // reverse iterator creation methods.
  276.   reverse_iterator rbegin()            { return reverse_iterator(end()); }
  277.   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
  278.   reverse_iterator rend()              { return reverse_iterator(begin()); }
  279.   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
  280.  
  281.   size_type size_in_bytes() const { return size() * sizeof(T); }
  282.   size_type max_size() const {
  283.     return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
  284.   }
  285.  
  286.   size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
  287.  
  288.   /// Return a pointer to the vector's buffer, even if empty().
  289.   pointer data() { return pointer(begin()); }
  290.   /// Return a pointer to the vector's buffer, even if empty().
  291.   const_pointer data() const { return const_pointer(begin()); }
  292.  
  293.   reference operator[](size_type idx) {
  294.     assert(idx < size());
  295.     return begin()[idx];
  296.   }
  297.   const_reference operator[](size_type idx) const {
  298.     assert(idx < size());
  299.     return begin()[idx];
  300.   }
  301.  
  302.   reference front() {
  303.     assert(!empty());
  304.     return begin()[0];
  305.   }
  306.   const_reference front() const {
  307.     assert(!empty());
  308.     return begin()[0];
  309.   }
  310.  
  311.   reference back() {
  312.     assert(!empty());
  313.     return end()[-1];
  314.   }
  315.   const_reference back() const {
  316.     assert(!empty());
  317.     return end()[-1];
  318.   }
  319. };
  320.  
  321. /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
  322. /// method implementations that are designed to work with non-trivial T's.
  323. ///
  324. /// We approximate is_trivially_copyable with trivial move/copy construction and
  325. /// trivial destruction. While the standard doesn't specify that you're allowed
  326. /// copy these types with memcpy, there is no way for the type to observe this.
  327. /// This catches the important case of std::pair<POD, POD>, which is not
  328. /// trivially assignable.
  329. template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
  330.                              (is_trivially_move_constructible<T>::value) &&
  331.                              std::is_trivially_destructible<T>::value>
  332. class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
  333.   friend class SmallVectorTemplateCommon<T>;
  334.  
  335. protected:
  336.   static constexpr bool TakesParamByValue = false;
  337.   using ValueParamT = const T &;
  338.  
  339.   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
  340.  
  341.   static void destroy_range(T *S, T *E) {
  342.     while (S != E) {
  343.       --E;
  344.       E->~T();
  345.     }
  346.   }
  347.  
  348.   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
  349.   /// constructing elements as needed.
  350.   template<typename It1, typename It2>
  351.   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
  352.     std::uninitialized_move(I, E, Dest);
  353.   }
  354.  
  355.   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
  356.   /// constructing elements as needed.
  357.   template<typename It1, typename It2>
  358.   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
  359.     std::uninitialized_copy(I, E, Dest);
  360.   }
  361.  
  362.   /// Grow the allocated memory (without initializing new elements), doubling
  363.   /// the size of the allocated memory. Guarantees space for at least one more
  364.   /// element, or MinSize more elements if specified.
  365.   void grow(size_t MinSize = 0);
  366.  
  367.   /// Create a new allocation big enough for \p MinSize and pass back its size
  368.   /// in \p NewCapacity. This is the first section of \a grow().
  369.   T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
  370.  
  371.   /// Move existing elements over to the new allocation \p NewElts, the middle
  372.   /// section of \a grow().
  373.   void moveElementsForGrow(T *NewElts);
  374.  
  375.   /// Transfer ownership of the allocation, finishing up \a grow().
  376.   void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
  377.  
  378.   /// Reserve enough space to add one element, and return the updated element
  379.   /// pointer in case it was a reference to the storage.
  380.   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
  381.     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
  382.   }
  383.  
  384.   /// Reserve enough space to add one element, and return the updated element
  385.   /// pointer in case it was a reference to the storage.
  386.   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
  387.     return const_cast<T *>(
  388.         this->reserveForParamAndGetAddressImpl(this, Elt, N));
  389.   }
  390.  
  391.   static T &&forward_value_param(T &&V) { return std::move(V); }
  392.   static const T &forward_value_param(const T &V) { return V; }
  393.  
  394.   void growAndAssign(size_t NumElts, const T &Elt) {
  395.     // Grow manually in case Elt is an internal reference.
  396.     size_t NewCapacity;
  397.     T *NewElts = mallocForGrow(NumElts, NewCapacity);
  398.     std::uninitialized_fill_n(NewElts, NumElts, Elt);
  399.     this->destroy_range(this->begin(), this->end());
  400.     takeAllocationForGrow(NewElts, NewCapacity);
  401.     this->set_size(NumElts);
  402.   }
  403.  
  404.   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
  405.     // Grow manually in case one of Args is an internal reference.
  406.     size_t NewCapacity;
  407.     T *NewElts = mallocForGrow(0, NewCapacity);
  408.     ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
  409.     moveElementsForGrow(NewElts);
  410.     takeAllocationForGrow(NewElts, NewCapacity);
  411.     this->set_size(this->size() + 1);
  412.     return this->back();
  413.   }
  414.  
  415. public:
  416.   void push_back(const T &Elt) {
  417.     const T *EltPtr = reserveForParamAndGetAddress(Elt);
  418.     ::new ((void *)this->end()) T(*EltPtr);
  419.     this->set_size(this->size() + 1);
  420.   }
  421.  
  422.   void push_back(T &&Elt) {
  423.     T *EltPtr = reserveForParamAndGetAddress(Elt);
  424.     ::new ((void *)this->end()) T(::std::move(*EltPtr));
  425.     this->set_size(this->size() + 1);
  426.   }
  427.  
  428.   void pop_back() {
  429.     this->set_size(this->size() - 1);
  430.     this->end()->~T();
  431.   }
  432. };
  433.  
  434. // Define this out-of-line to dissuade the C++ compiler from inlining it.
  435. template <typename T, bool TriviallyCopyable>
  436. void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
  437.   size_t NewCapacity;
  438.   T *NewElts = mallocForGrow(MinSize, NewCapacity);
  439.   moveElementsForGrow(NewElts);
  440.   takeAllocationForGrow(NewElts, NewCapacity);
  441. }
  442.  
  443. template <typename T, bool TriviallyCopyable>
  444. T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
  445.     size_t MinSize, size_t &NewCapacity) {
  446.   return static_cast<T *>(
  447.       SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
  448.           this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
  449. }
  450.  
  451. // Define this out-of-line to dissuade the C++ compiler from inlining it.
  452. template <typename T, bool TriviallyCopyable>
  453. void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
  454.     T *NewElts) {
  455.   // Move the elements over.
  456.   this->uninitialized_move(this->begin(), this->end(), NewElts);
  457.  
  458.   // Destroy the original elements.
  459.   destroy_range(this->begin(), this->end());
  460. }
  461.  
  462. // Define this out-of-line to dissuade the C++ compiler from inlining it.
  463. template <typename T, bool TriviallyCopyable>
  464. void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
  465.     T *NewElts, size_t NewCapacity) {
  466.   // If this wasn't grown from the inline copy, deallocate the old space.
  467.   if (!this->isSmall())
  468.     free(this->begin());
  469.  
  470.   this->BeginX = NewElts;
  471.   this->Capacity = NewCapacity;
  472. }
  473.  
  474. /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
  475. /// method implementations that are designed to work with trivially copyable
  476. /// T's. This allows using memcpy in place of copy/move construction and
  477. /// skipping destruction.
  478. template <typename T>
  479. class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
  480.   friend class SmallVectorTemplateCommon<T>;
  481.  
  482. protected:
  483.   /// True if it's cheap enough to take parameters by value. Doing so avoids
  484.   /// overhead related to mitigations for reference invalidation.
  485.   static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
  486.  
  487.   /// Either const T& or T, depending on whether it's cheap enough to take
  488.   /// parameters by value.
  489.   using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
  490.  
  491.   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
  492.  
  493.   // No need to do a destroy loop for POD's.
  494.   static void destroy_range(T *, T *) {}
  495.  
  496.   /// Move the range [I, E) onto the uninitialized memory
  497.   /// starting with "Dest", constructing elements into it as needed.
  498.   template<typename It1, typename It2>
  499.   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
  500.     // Just do a copy.
  501.     uninitialized_copy(I, E, Dest);
  502.   }
  503.  
  504.   /// Copy the range [I, E) onto the uninitialized memory
  505.   /// starting with "Dest", constructing elements into it as needed.
  506.   template<typename It1, typename It2>
  507.   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
  508.     // Arbitrary iterator types; just use the basic implementation.
  509.     std::uninitialized_copy(I, E, Dest);
  510.   }
  511.  
  512.   /// Copy the range [I, E) onto the uninitialized memory
  513.   /// starting with "Dest", constructing elements into it as needed.
  514.   template <typename T1, typename T2>
  515.   static void uninitialized_copy(
  516.       T1 *I, T1 *E, T2 *Dest,
  517.       std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
  518.           nullptr) {
  519.     // Use memcpy for PODs iterated by pointers (which includes SmallVector
  520.     // iterators): std::uninitialized_copy optimizes to memmove, but we can
  521.     // use memcpy here. Note that I and E are iterators and thus might be
  522.     // invalid for memcpy if they are equal.
  523.     if (I != E)
  524.       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
  525.   }
  526.  
  527.   /// Double the size of the allocated memory, guaranteeing space for at
  528.   /// least one more element or MinSize if specified.
  529.   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
  530.  
  531.   /// Reserve enough space to add one element, and return the updated element
  532.   /// pointer in case it was a reference to the storage.
  533.   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
  534.     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
  535.   }
  536.  
  537.   /// Reserve enough space to add one element, and return the updated element
  538.   /// pointer in case it was a reference to the storage.
  539.   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
  540.     return const_cast<T *>(
  541.         this->reserveForParamAndGetAddressImpl(this, Elt, N));
  542.   }
  543.  
  544.   /// Copy \p V or return a reference, depending on \a ValueParamT.
  545.   static ValueParamT forward_value_param(ValueParamT V) { return V; }
  546.  
  547.   void growAndAssign(size_t NumElts, T Elt) {
  548.     // Elt has been copied in case it's an internal reference, side-stepping
  549.     // reference invalidation problems without losing the realloc optimization.
  550.     this->set_size(0);
  551.     this->grow(NumElts);
  552.     std::uninitialized_fill_n(this->begin(), NumElts, Elt);
  553.     this->set_size(NumElts);
  554.   }
  555.  
  556.   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
  557.     // Use push_back with a copy in case Args has an internal reference,
  558.     // side-stepping reference invalidation problems without losing the realloc
  559.     // optimization.
  560.     push_back(T(std::forward<ArgTypes>(Args)...));
  561.     return this->back();
  562.   }
  563.  
  564. public:
  565.   void push_back(ValueParamT Elt) {
  566.     const T *EltPtr = reserveForParamAndGetAddress(Elt);
  567.     memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
  568.     this->set_size(this->size() + 1);
  569.   }
  570.  
  571.   void pop_back() { this->set_size(this->size() - 1); }
  572. };
  573.  
  574. /// This class consists of common code factored out of the SmallVector class to
  575. /// reduce code duplication based on the SmallVector 'N' template parameter.
  576. template <typename T>
  577. class SmallVectorImpl : public SmallVectorTemplateBase<T> {
  578.   using SuperClass = SmallVectorTemplateBase<T>;
  579.  
  580. public:
  581.   using iterator = typename SuperClass::iterator;
  582.   using const_iterator = typename SuperClass::const_iterator;
  583.   using reference = typename SuperClass::reference;
  584.   using size_type = typename SuperClass::size_type;
  585.  
  586. protected:
  587.   using SmallVectorTemplateBase<T>::TakesParamByValue;
  588.   using ValueParamT = typename SuperClass::ValueParamT;
  589.  
  590.   // Default ctor - Initialize to empty.
  591.   explicit SmallVectorImpl(unsigned N)
  592.       : SmallVectorTemplateBase<T>(N) {}
  593.  
  594.   void assignRemote(SmallVectorImpl &&RHS) {
  595.     this->destroy_range(this->begin(), this->end());
  596.     if (!this->isSmall())
  597.       free(this->begin());
  598.     this->BeginX = RHS.BeginX;
  599.     this->Size = RHS.Size;
  600.     this->Capacity = RHS.Capacity;
  601.     RHS.resetToSmall();
  602.   }
  603.  
  604. public:
  605.   SmallVectorImpl(const SmallVectorImpl &) = delete;
  606.  
  607.   ~SmallVectorImpl() {
  608.     // Subclass has already destructed this vector's elements.
  609.     // If this wasn't grown from the inline copy, deallocate the old space.
  610.     if (!this->isSmall())
  611.       free(this->begin());
  612.   }
  613.  
  614.   void clear() {
  615.     this->destroy_range(this->begin(), this->end());
  616.     this->Size = 0;
  617.   }
  618.  
  619. private:
  620.   // Make set_size() private to avoid misuse in subclasses.
  621.   using SuperClass::set_size;
  622.  
  623.   template <bool ForOverwrite> void resizeImpl(size_type N) {
  624.     if (N == this->size())
  625.       return;
  626.  
  627.     if (N < this->size()) {
  628.       this->truncate(N);
  629.       return;
  630.     }
  631.  
  632.     this->reserve(N);
  633.     for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
  634.       if (ForOverwrite)
  635.         new (&*I) T;
  636.       else
  637.         new (&*I) T();
  638.     this->set_size(N);
  639.   }
  640.  
  641. public:
  642.   void resize(size_type N) { resizeImpl<false>(N); }
  643.  
  644.   /// Like resize, but \ref T is POD, the new values won't be initialized.
  645.   void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
  646.  
  647.   /// Like resize, but requires that \p N is less than \a size().
  648.   void truncate(size_type N) {
  649.     assert(this->size() >= N && "Cannot increase size with truncate");
  650.     this->destroy_range(this->begin() + N, this->end());
  651.     this->set_size(N);
  652.   }
  653.  
  654.   void resize(size_type N, ValueParamT NV) {
  655.     if (N == this->size())
  656.       return;
  657.  
  658.     if (N < this->size()) {
  659.       this->truncate(N);
  660.       return;
  661.     }
  662.  
  663.     // N > this->size(). Defer to append.
  664.     this->append(N - this->size(), NV);
  665.   }
  666.  
  667.   void reserve(size_type N) {
  668.     if (this->capacity() < N)
  669.       this->grow(N);
  670.   }
  671.  
  672.   void pop_back_n(size_type NumItems) {
  673.     assert(this->size() >= NumItems);
  674.     truncate(this->size() - NumItems);
  675.   }
  676.  
  677.   [[nodiscard]] T pop_back_val() {
  678.     T Result = ::std::move(this->back());
  679.     this->pop_back();
  680.     return Result;
  681.   }
  682.  
  683.   void swap(SmallVectorImpl &RHS);
  684.  
  685.   /// Add the specified range to the end of the SmallVector.
  686.   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  687.   void append(ItTy in_start, ItTy in_end) {
  688.     this->assertSafeToAddRange(in_start, in_end);
  689.     size_type NumInputs = std::distance(in_start, in_end);
  690.     this->reserve(this->size() + NumInputs);
  691.     this->uninitialized_copy(in_start, in_end, this->end());
  692.     this->set_size(this->size() + NumInputs);
  693.   }
  694.  
  695.   /// Append \p NumInputs copies of \p Elt to the end.
  696.   void append(size_type NumInputs, ValueParamT Elt) {
  697.     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
  698.     std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
  699.     this->set_size(this->size() + NumInputs);
  700.   }
  701.  
  702.   void append(std::initializer_list<T> IL) {
  703.     append(IL.begin(), IL.end());
  704.   }
  705.  
  706.   void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
  707.  
  708.   void assign(size_type NumElts, ValueParamT Elt) {
  709.     // Note that Elt could be an internal reference.
  710.     if (NumElts > this->capacity()) {
  711.       this->growAndAssign(NumElts, Elt);
  712.       return;
  713.     }
  714.  
  715.     // Assign over existing elements.
  716.     std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
  717.     if (NumElts > this->size())
  718.       std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
  719.     else if (NumElts < this->size())
  720.       this->destroy_range(this->begin() + NumElts, this->end());
  721.     this->set_size(NumElts);
  722.   }
  723.  
  724.   // FIXME: Consider assigning over existing elements, rather than clearing &
  725.   // re-initializing them - for all assign(...) variants.
  726.  
  727.   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  728.   void assign(ItTy in_start, ItTy in_end) {
  729.     this->assertSafeToReferenceAfterClear(in_start, in_end);
  730.     clear();
  731.     append(in_start, in_end);
  732.   }
  733.  
  734.   void assign(std::initializer_list<T> IL) {
  735.     clear();
  736.     append(IL);
  737.   }
  738.  
  739.   void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
  740.  
  741.   iterator erase(const_iterator CI) {
  742.     // Just cast away constness because this is a non-const member function.
  743.     iterator I = const_cast<iterator>(CI);
  744.  
  745.     assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
  746.  
  747.     iterator N = I;
  748.     // Shift all elts down one.
  749.     std::move(I+1, this->end(), I);
  750.     // Drop the last elt.
  751.     this->pop_back();
  752.     return(N);
  753.   }
  754.  
  755.   iterator erase(const_iterator CS, const_iterator CE) {
  756.     // Just cast away constness because this is a non-const member function.
  757.     iterator S = const_cast<iterator>(CS);
  758.     iterator E = const_cast<iterator>(CE);
  759.  
  760.     assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
  761.  
  762.     iterator N = S;
  763.     // Shift all elts down.
  764.     iterator I = std::move(E, this->end(), S);
  765.     // Drop the last elts.
  766.     this->destroy_range(I, this->end());
  767.     this->set_size(I - this->begin());
  768.     return(N);
  769.   }
  770.  
  771. private:
  772.   template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
  773.     // Callers ensure that ArgType is derived from T.
  774.     static_assert(
  775.         std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
  776.                      T>::value,
  777.         "ArgType must be derived from T!");
  778.  
  779.     if (I == this->end()) {  // Important special case for empty vector.
  780.       this->push_back(::std::forward<ArgType>(Elt));
  781.       return this->end()-1;
  782.     }
  783.  
  784.     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
  785.  
  786.     // Grow if necessary.
  787.     size_t Index = I - this->begin();
  788.     std::remove_reference_t<ArgType> *EltPtr =
  789.         this->reserveForParamAndGetAddress(Elt);
  790.     I = this->begin() + Index;
  791.  
  792.     ::new ((void*) this->end()) T(::std::move(this->back()));
  793.     // Push everything else over.
  794.     std::move_backward(I, this->end()-1, this->end());
  795.     this->set_size(this->size() + 1);
  796.  
  797.     // If we just moved the element we're inserting, be sure to update
  798.     // the reference (never happens if TakesParamByValue).
  799.     static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
  800.                   "ArgType must be 'T' when taking by value!");
  801.     if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
  802.       ++EltPtr;
  803.  
  804.     *I = ::std::forward<ArgType>(*EltPtr);
  805.     return I;
  806.   }
  807.  
  808. public:
  809.   iterator insert(iterator I, T &&Elt) {
  810.     return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
  811.   }
  812.  
  813.   iterator insert(iterator I, const T &Elt) {
  814.     return insert_one_impl(I, this->forward_value_param(Elt));
  815.   }
  816.  
  817.   iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
  818.     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
  819.     size_t InsertElt = I - this->begin();
  820.  
  821.     if (I == this->end()) {  // Important special case for empty vector.
  822.       append(NumToInsert, Elt);
  823.       return this->begin()+InsertElt;
  824.     }
  825.  
  826.     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
  827.  
  828.     // Ensure there is enough space, and get the (maybe updated) address of
  829.     // Elt.
  830.     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
  831.  
  832.     // Uninvalidate the iterator.
  833.     I = this->begin()+InsertElt;
  834.  
  835.     // If there are more elements between the insertion point and the end of the
  836.     // range than there are being inserted, we can use a simple approach to
  837.     // insertion.  Since we already reserved space, we know that this won't
  838.     // reallocate the vector.
  839.     if (size_t(this->end()-I) >= NumToInsert) {
  840.       T *OldEnd = this->end();
  841.       append(std::move_iterator<iterator>(this->end() - NumToInsert),
  842.              std::move_iterator<iterator>(this->end()));
  843.  
  844.       // Copy the existing elements that get replaced.
  845.       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
  846.  
  847.       // If we just moved the element we're inserting, be sure to update
  848.       // the reference (never happens if TakesParamByValue).
  849.       if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
  850.         EltPtr += NumToInsert;
  851.  
  852.       std::fill_n(I, NumToInsert, *EltPtr);
  853.       return I;
  854.     }
  855.  
  856.     // Otherwise, we're inserting more elements than exist already, and we're
  857.     // not inserting at the end.
  858.  
  859.     // Move over the elements that we're about to overwrite.
  860.     T *OldEnd = this->end();
  861.     this->set_size(this->size() + NumToInsert);
  862.     size_t NumOverwritten = OldEnd-I;
  863.     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
  864.  
  865.     // If we just moved the element we're inserting, be sure to update
  866.     // the reference (never happens if TakesParamByValue).
  867.     if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
  868.       EltPtr += NumToInsert;
  869.  
  870.     // Replace the overwritten part.
  871.     std::fill_n(I, NumOverwritten, *EltPtr);
  872.  
  873.     // Insert the non-overwritten middle part.
  874.     std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
  875.     return I;
  876.   }
  877.  
  878.   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  879.   iterator insert(iterator I, ItTy From, ItTy To) {
  880.     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
  881.     size_t InsertElt = I - this->begin();
  882.  
  883.     if (I == this->end()) {  // Important special case for empty vector.
  884.       append(From, To);
  885.       return this->begin()+InsertElt;
  886.     }
  887.  
  888.     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
  889.  
  890.     // Check that the reserve that follows doesn't invalidate the iterators.
  891.     this->assertSafeToAddRange(From, To);
  892.  
  893.     size_t NumToInsert = std::distance(From, To);
  894.  
  895.     // Ensure there is enough space.
  896.     reserve(this->size() + NumToInsert);
  897.  
  898.     // Uninvalidate the iterator.
  899.     I = this->begin()+InsertElt;
  900.  
  901.     // If there are more elements between the insertion point and the end of the
  902.     // range than there are being inserted, we can use a simple approach to
  903.     // insertion.  Since we already reserved space, we know that this won't
  904.     // reallocate the vector.
  905.     if (size_t(this->end()-I) >= NumToInsert) {
  906.       T *OldEnd = this->end();
  907.       append(std::move_iterator<iterator>(this->end() - NumToInsert),
  908.              std::move_iterator<iterator>(this->end()));
  909.  
  910.       // Copy the existing elements that get replaced.
  911.       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
  912.  
  913.       std::copy(From, To, I);
  914.       return I;
  915.     }
  916.  
  917.     // Otherwise, we're inserting more elements than exist already, and we're
  918.     // not inserting at the end.
  919.  
  920.     // Move over the elements that we're about to overwrite.
  921.     T *OldEnd = this->end();
  922.     this->set_size(this->size() + NumToInsert);
  923.     size_t NumOverwritten = OldEnd-I;
  924.     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
  925.  
  926.     // Replace the overwritten part.
  927.     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
  928.       *J = *From;
  929.       ++J; ++From;
  930.     }
  931.  
  932.     // Insert the non-overwritten middle part.
  933.     this->uninitialized_copy(From, To, OldEnd);
  934.     return I;
  935.   }
  936.  
  937.   void insert(iterator I, std::initializer_list<T> IL) {
  938.     insert(I, IL.begin(), IL.end());
  939.   }
  940.  
  941.   template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
  942.     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
  943.       return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
  944.  
  945.     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
  946.     this->set_size(this->size() + 1);
  947.     return this->back();
  948.   }
  949.  
  950.   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
  951.  
  952.   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
  953.  
  954.   bool operator==(const SmallVectorImpl &RHS) const {
  955.     if (this->size() != RHS.size()) return false;
  956.     return std::equal(this->begin(), this->end(), RHS.begin());
  957.   }
  958.   bool operator!=(const SmallVectorImpl &RHS) const {
  959.     return !(*this == RHS);
  960.   }
  961.  
  962.   bool operator<(const SmallVectorImpl &RHS) const {
  963.     return std::lexicographical_compare(this->begin(), this->end(),
  964.                                         RHS.begin(), RHS.end());
  965.   }
  966.   bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
  967.   bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
  968.   bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
  969. };
  970.  
  971. template <typename T>
  972. void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
  973.   if (this == &RHS) return;
  974.  
  975.   // We can only avoid copying elements if neither vector is small.
  976.   if (!this->isSmall() && !RHS.isSmall()) {
  977.     std::swap(this->BeginX, RHS.BeginX);
  978.     std::swap(this->Size, RHS.Size);
  979.     std::swap(this->Capacity, RHS.Capacity);
  980.     return;
  981.   }
  982.   this->reserve(RHS.size());
  983.   RHS.reserve(this->size());
  984.  
  985.   // Swap the shared elements.
  986.   size_t NumShared = this->size();
  987.   if (NumShared > RHS.size()) NumShared = RHS.size();
  988.   for (size_type i = 0; i != NumShared; ++i)
  989.     std::swap((*this)[i], RHS[i]);
  990.  
  991.   // Copy over the extra elts.
  992.   if (this->size() > RHS.size()) {
  993.     size_t EltDiff = this->size() - RHS.size();
  994.     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
  995.     RHS.set_size(RHS.size() + EltDiff);
  996.     this->destroy_range(this->begin()+NumShared, this->end());
  997.     this->set_size(NumShared);
  998.   } else if (RHS.size() > this->size()) {
  999.     size_t EltDiff = RHS.size() - this->size();
  1000.     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
  1001.     this->set_size(this->size() + EltDiff);
  1002.     this->destroy_range(RHS.begin()+NumShared, RHS.end());
  1003.     RHS.set_size(NumShared);
  1004.   }
  1005. }
  1006.  
  1007. template <typename T>
  1008. SmallVectorImpl<T> &SmallVectorImpl<T>::
  1009.   operator=(const SmallVectorImpl<T> &RHS) {
  1010.   // Avoid self-assignment.
  1011.   if (this == &RHS) return *this;
  1012.  
  1013.   // If we already have sufficient space, assign the common elements, then
  1014.   // destroy any excess.
  1015.   size_t RHSSize = RHS.size();
  1016.   size_t CurSize = this->size();
  1017.   if (CurSize >= RHSSize) {
  1018.     // Assign common elements.
  1019.     iterator NewEnd;
  1020.     if (RHSSize)
  1021.       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
  1022.     else
  1023.       NewEnd = this->begin();
  1024.  
  1025.     // Destroy excess elements.
  1026.     this->destroy_range(NewEnd, this->end());
  1027.  
  1028.     // Trim.
  1029.     this->set_size(RHSSize);
  1030.     return *this;
  1031.   }
  1032.  
  1033.   // If we have to grow to have enough elements, destroy the current elements.
  1034.   // This allows us to avoid copying them during the grow.
  1035.   // FIXME: don't do this if they're efficiently moveable.
  1036.   if (this->capacity() < RHSSize) {
  1037.     // Destroy current elements.
  1038.     this->clear();
  1039.     CurSize = 0;
  1040.     this->grow(RHSSize);
  1041.   } else if (CurSize) {
  1042.     // Otherwise, use assignment for the already-constructed elements.
  1043.     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
  1044.   }
  1045.  
  1046.   // Copy construct the new elements in place.
  1047.   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
  1048.                            this->begin()+CurSize);
  1049.  
  1050.   // Set end.
  1051.   this->set_size(RHSSize);
  1052.   return *this;
  1053. }
  1054.  
  1055. template <typename T>
  1056. SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
  1057.   // Avoid self-assignment.
  1058.   if (this == &RHS) return *this;
  1059.  
  1060.   // If the RHS isn't small, clear this vector and then steal its buffer.
  1061.   if (!RHS.isSmall()) {
  1062.     this->assignRemote(std::move(RHS));
  1063.     return *this;
  1064.   }
  1065.  
  1066.   // If we already have sufficient space, assign the common elements, then
  1067.   // destroy any excess.
  1068.   size_t RHSSize = RHS.size();
  1069.   size_t CurSize = this->size();
  1070.   if (CurSize >= RHSSize) {
  1071.     // Assign common elements.
  1072.     iterator NewEnd = this->begin();
  1073.     if (RHSSize)
  1074.       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
  1075.  
  1076.     // Destroy excess elements and trim the bounds.
  1077.     this->destroy_range(NewEnd, this->end());
  1078.     this->set_size(RHSSize);
  1079.  
  1080.     // Clear the RHS.
  1081.     RHS.clear();
  1082.  
  1083.     return *this;
  1084.   }
  1085.  
  1086.   // If we have to grow to have enough elements, destroy the current elements.
  1087.   // This allows us to avoid copying them during the grow.
  1088.   // FIXME: this may not actually make any sense if we can efficiently move
  1089.   // elements.
  1090.   if (this->capacity() < RHSSize) {
  1091.     // Destroy current elements.
  1092.     this->clear();
  1093.     CurSize = 0;
  1094.     this->grow(RHSSize);
  1095.   } else if (CurSize) {
  1096.     // Otherwise, use assignment for the already-constructed elements.
  1097.     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
  1098.   }
  1099.  
  1100.   // Move-construct the new elements in place.
  1101.   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
  1102.                            this->begin()+CurSize);
  1103.  
  1104.   // Set end.
  1105.   this->set_size(RHSSize);
  1106.  
  1107.   RHS.clear();
  1108.   return *this;
  1109. }
  1110.  
  1111. /// Storage for the SmallVector elements.  This is specialized for the N=0 case
  1112. /// to avoid allocating unnecessary storage.
  1113. template <typename T, unsigned N>
  1114. struct SmallVectorStorage {
  1115.   alignas(T) char InlineElts[N * sizeof(T)];
  1116. };
  1117.  
  1118. /// We need the storage to be properly aligned even for small-size of 0 so that
  1119. /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
  1120. /// well-defined.
  1121. template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
  1122.  
  1123. /// Forward declaration of SmallVector so that
  1124. /// calculateSmallVectorDefaultInlinedElements can reference
  1125. /// `sizeof(SmallVector<T, 0>)`.
  1126. template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
  1127.  
  1128. /// Helper class for calculating the default number of inline elements for
  1129. /// `SmallVector<T>`.
  1130. ///
  1131. /// This should be migrated to a constexpr function when our minimum
  1132. /// compiler support is enough for multi-statement constexpr functions.
  1133. template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
  1134.   // Parameter controlling the default number of inlined elements
  1135.   // for `SmallVector<T>`.
  1136.   //
  1137.   // The default number of inlined elements ensures that
  1138.   // 1. There is at least one inlined element.
  1139.   // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
  1140.   // it contradicts 1.
  1141.   static constexpr size_t kPreferredSmallVectorSizeof = 64;
  1142.  
  1143.   // static_assert that sizeof(T) is not "too big".
  1144.   //
  1145.   // Because our policy guarantees at least one inlined element, it is possible
  1146.   // for an arbitrarily large inlined element to allocate an arbitrarily large
  1147.   // amount of inline storage. We generally consider it an antipattern for a
  1148.   // SmallVector to allocate an excessive amount of inline storage, so we want
  1149.   // to call attention to these cases and make sure that users are making an
  1150.   // intentional decision if they request a lot of inline storage.
  1151.   //
  1152.   // We want this assertion to trigger in pathological cases, but otherwise
  1153.   // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
  1154.   // larger than kPreferredSmallVectorSizeof (otherwise,
  1155.   // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
  1156.   // pattern seems useful in practice).
  1157.   //
  1158.   // One wrinkle is that this assertion is in theory non-portable, since
  1159.   // sizeof(T) is in general platform-dependent. However, we don't expect this
  1160.   // to be much of an issue, because most LLVM development happens on 64-bit
  1161.   // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
  1162.   // 32-bit hosts, dodging the issue. The reverse situation, where development
  1163.   // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
  1164.   // 64-bit host, is expected to be very rare.
  1165.   static_assert(
  1166.       sizeof(T) <= 256,
  1167.       "You are trying to use a default number of inlined elements for "
  1168.       "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
  1169.       "explicit number of inlined elements with `SmallVector<T, N>` to make "
  1170.       "sure you really want that much inline storage.");
  1171.  
  1172.   // Discount the size of the header itself when calculating the maximum inline
  1173.   // bytes.
  1174.   static constexpr size_t PreferredInlineBytes =
  1175.       kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
  1176.   static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
  1177.   static constexpr size_t value =
  1178.       NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
  1179. };
  1180.  
  1181. /// This is a 'vector' (really, a variable-sized array), optimized
  1182. /// for the case when the array is small.  It contains some number of elements
  1183. /// in-place, which allows it to avoid heap allocation when the actual number of
  1184. /// elements is below that threshold.  This allows normal "small" cases to be
  1185. /// fast without losing generality for large inputs.
  1186. ///
  1187. /// \note
  1188. /// In the absence of a well-motivated choice for the number of inlined
  1189. /// elements \p N, it is recommended to use \c SmallVector<T> (that is,
  1190. /// omitting the \p N). This will choose a default number of inlined elements
  1191. /// reasonable for allocation on the stack (for example, trying to keep \c
  1192. /// sizeof(SmallVector<T>) around 64 bytes).
  1193. ///
  1194. /// \warning This does not attempt to be exception safe.
  1195. ///
  1196. /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
  1197. template <typename T,
  1198.           unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
  1199. class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
  1200.                                    SmallVectorStorage<T, N> {
  1201. public:
  1202.   SmallVector() : SmallVectorImpl<T>(N) {}
  1203.  
  1204.   ~SmallVector() {
  1205.     // Destroy the constructed elements in the vector.
  1206.     this->destroy_range(this->begin(), this->end());
  1207.   }
  1208.  
  1209.   explicit SmallVector(size_t Size, const T &Value = T())
  1210.     : SmallVectorImpl<T>(N) {
  1211.     this->assign(Size, Value);
  1212.   }
  1213.  
  1214.   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
  1215.   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
  1216.     this->append(S, E);
  1217.   }
  1218.  
  1219.   template <typename RangeTy>
  1220.   explicit SmallVector(const iterator_range<RangeTy> &R)
  1221.       : SmallVectorImpl<T>(N) {
  1222.     this->append(R.begin(), R.end());
  1223.   }
  1224.  
  1225.   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
  1226.     this->append(IL);
  1227.   }
  1228.  
  1229.   template <typename U,
  1230.             typename = std::enable_if_t<std::is_convertible<U, T>::value>>
  1231.   explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
  1232.     this->append(A.begin(), A.end());
  1233.   }
  1234.  
  1235.   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
  1236.     if (!RHS.empty())
  1237.       SmallVectorImpl<T>::operator=(RHS);
  1238.   }
  1239.  
  1240.   SmallVector &operator=(const SmallVector &RHS) {
  1241.     SmallVectorImpl<T>::operator=(RHS);
  1242.     return *this;
  1243.   }
  1244.  
  1245.   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
  1246.     if (!RHS.empty())
  1247.       SmallVectorImpl<T>::operator=(::std::move(RHS));
  1248.   }
  1249.  
  1250.   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
  1251.     if (!RHS.empty())
  1252.       SmallVectorImpl<T>::operator=(::std::move(RHS));
  1253.   }
  1254.  
  1255.   SmallVector &operator=(SmallVector &&RHS) {
  1256.     if (N) {
  1257.       SmallVectorImpl<T>::operator=(::std::move(RHS));
  1258.       return *this;
  1259.     }
  1260.     // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
  1261.     // case.
  1262.     if (this == &RHS)
  1263.       return *this;
  1264.     if (RHS.empty()) {
  1265.       this->destroy_range(this->begin(), this->end());
  1266.       this->Size = 0;
  1267.     } else {
  1268.       this->assignRemote(std::move(RHS));
  1269.     }
  1270.     return *this;
  1271.   }
  1272.  
  1273.   SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
  1274.     SmallVectorImpl<T>::operator=(::std::move(RHS));
  1275.     return *this;
  1276.   }
  1277.  
  1278.   SmallVector &operator=(std::initializer_list<T> IL) {
  1279.     this->assign(IL);
  1280.     return *this;
  1281.   }
  1282. };
  1283.  
  1284. template <typename T, unsigned N>
  1285. inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
  1286.   return X.capacity_in_bytes();
  1287. }
  1288.  
  1289. template <typename RangeType>
  1290. using ValueTypeFromRangeType =
  1291.     std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
  1292.         std::declval<RangeType &>()))>>;
  1293.  
  1294. /// Given a range of type R, iterate the entire range and return a
  1295. /// SmallVector with elements of the vector.  This is useful, for example,
  1296. /// when you want to iterate a range and then sort the results.
  1297. template <unsigned Size, typename R>
  1298. SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
  1299.   return {std::begin(Range), std::end(Range)};
  1300. }
  1301. template <typename R>
  1302. SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
  1303.   return {std::begin(Range), std::end(Range)};
  1304. }
  1305.  
  1306. template <typename Out, unsigned Size, typename R>
  1307. SmallVector<Out, Size> to_vector_of(R &&Range) {
  1308.   return {std::begin(Range), std::end(Range)};
  1309. }
  1310.  
  1311. template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
  1312.   return {std::begin(Range), std::end(Range)};
  1313. }
  1314.  
  1315. // Explicit instantiations
  1316. extern template class llvm::SmallVectorBase<uint32_t>;
  1317. #if SIZE_MAX > UINT32_MAX
  1318. extern template class llvm::SmallVectorBase<uint64_t>;
  1319. #endif
  1320.  
  1321. } // end namespace llvm
  1322.  
  1323. namespace std {
  1324.  
  1325.   /// Implement std::swap in terms of SmallVector swap.
  1326.   template<typename T>
  1327.   inline void
  1328.   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
  1329.     LHS.swap(RHS);
  1330.   }
  1331.  
  1332.   /// Implement std::swap in terms of SmallVector swap.
  1333.   template<typename T, unsigned N>
  1334.   inline void
  1335.   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
  1336.     LHS.swap(RHS);
  1337.   }
  1338.  
  1339. } // end namespace std
  1340.  
  1341. #endif // LLVM_ADT_SMALLVECTOR_H
  1342.