- //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// 
- /// \file 
- /// This file defines the SmallVector class. 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ADT_SMALLVECTOR_H 
- #define LLVM_ADT_SMALLVECTOR_H 
-   
- #include "llvm/Support/Compiler.h" 
- #include "llvm/Support/type_traits.h" 
- #include <algorithm> 
- #include <cassert> 
- #include <cstddef> 
- #include <cstdlib> 
- #include <cstring> 
- #include <functional> 
- #include <initializer_list> 
- #include <iterator> 
- #include <limits> 
- #include <memory> 
- #include <new> 
- #include <type_traits> 
- #include <utility> 
-   
- namespace llvm { 
-   
- template <typename T> class ArrayRef; 
-   
- template <typename IteratorT> class iterator_range; 
-   
- template <class Iterator> 
- using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< 
-     typename std::iterator_traits<Iterator>::iterator_category, 
-     std::input_iterator_tag>::value>; 
-   
- /// This is all the stuff common to all SmallVectors. 
- /// 
- /// The template parameter specifies the type which should be used to hold the 
- /// Size and Capacity of the SmallVector, so it can be adjusted. 
- /// Using 32 bit size is desirable to shrink the size of the SmallVector. 
- /// Using 64 bit size is desirable for cases like SmallVector<char>, where a 
- /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for 
- /// buffering bitcode output - which can exceed 4GB. 
- template <class Size_T> class SmallVectorBase { 
- protected: 
-   void *BeginX; 
-   Size_T Size = 0, Capacity; 
-   
-   /// The maximum value of the Size_T used. 
-   static constexpr size_t SizeTypeMax() { 
-     return std::numeric_limits<Size_T>::max(); 
-   } 
-   
-   SmallVectorBase() = delete; 
-   SmallVectorBase(void *FirstEl, size_t TotalCapacity) 
-       : BeginX(FirstEl), Capacity(TotalCapacity) {} 
-   
-   /// This is a helper for \a grow() that's out of line to reduce code 
-   /// duplication.  This function will report a fatal error if it can't grow at 
-   /// least to \p MinSize. 
-   void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, 
-                       size_t &NewCapacity); 
-   
-   /// This is an implementation of the grow() method which only works 
-   /// on POD-like data types and is out of line to reduce code duplication. 
-   /// This function will report a fatal error if it cannot increase capacity. 
-   void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); 
-   
-   /// If vector was first created with capacity 0, getFirstEl() points to the 
-   /// memory right after, an area unallocated. If a subsequent allocation, 
-   /// that grows the vector, happens to return the same pointer as getFirstEl(), 
-   /// get a new allocation, otherwise isSmall() will falsely return that no 
-   /// allocation was done (true) and the memory will not be freed in the 
-   /// destructor. If a VSize is given (vector size), also copy that many 
-   /// elements to the new allocation - used if realloca fails to increase 
-   /// space, and happens to allocate precisely at BeginX. 
-   /// This is unlikely to be called often, but resolves a memory leak when the 
-   /// situation does occur. 
-   void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity, 
-                           size_t VSize = 0); 
-   
- public: 
-   size_t size() const { return Size; } 
-   size_t capacity() const { return Capacity; } 
-   
-   [[nodiscard]] bool empty() const { return !Size; } 
-   
- protected: 
-   /// Set the array size to \p N, which the current array must have enough 
-   /// capacity for. 
-   /// 
-   /// This does not construct or destroy any elements in the vector. 
-   void set_size(size_t N) { 
-     assert(N <= capacity()); 
-     Size = N; 
-   } 
- }; 
-   
- template <class T> 
- using SmallVectorSizeType = 
-     std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, 
-                        uint32_t>; 
-   
- /// Figure out the offset of the first element. 
- template <class T, typename = void> struct SmallVectorAlignmentAndSize { 
-   alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( 
-       SmallVectorBase<SmallVectorSizeType<T>>)]; 
-   alignas(T) char FirstEl[sizeof(T)]; 
- }; 
-   
- /// This is the part of SmallVectorTemplateBase which does not depend on whether 
- /// the type T is a POD. The extra dummy template argument is used by ArrayRef 
- /// to avoid unnecessarily requiring T to be complete. 
- template <typename T, typename = void> 
- class SmallVectorTemplateCommon 
-     : public SmallVectorBase<SmallVectorSizeType<T>> { 
-   using Base = SmallVectorBase<SmallVectorSizeType<T>>; 
-   
- protected: 
-   /// Find the address of the first element.  For this pointer math to be valid 
-   /// with small-size of 0 for T with lots of alignment, it's important that 
-   /// SmallVectorStorage is properly-aligned even for small-size of 0. 
-   void *getFirstEl() const { 
-     return const_cast<void *>(reinterpret_cast<const void *>( 
-         reinterpret_cast<const char *>(this) + 
-         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); 
-   } 
-   // Space after 'FirstEl' is clobbered, do not add any instance vars after it. 
-   
-   SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} 
-   
-   void grow_pod(size_t MinSize, size_t TSize) { 
-     Base::grow_pod(getFirstEl(), MinSize, TSize); 
-   } 
-   
-   /// Return true if this is a smallvector which has not had dynamic 
-   /// memory allocated for it. 
-   bool isSmall() const { return this->BeginX == getFirstEl(); } 
-   
-   /// Put this vector in a state of being small. 
-   void resetToSmall() { 
-     this->BeginX = getFirstEl(); 
-     this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. 
-   } 
-   
-   /// Return true if V is an internal reference to the given range. 
-   bool isReferenceToRange(const void *V, const void *First, const void *Last) const { 
-     // Use std::less to avoid UB. 
-     std::less<> LessThan; 
-     return !LessThan(V, First) && LessThan(V, Last); 
-   } 
-   
-   /// Return true if V is an internal reference to this vector. 
-   bool isReferenceToStorage(const void *V) const { 
-     return isReferenceToRange(V, this->begin(), this->end()); 
-   } 
-   
-   /// Return true if First and Last form a valid (possibly empty) range in this 
-   /// vector's storage. 
-   bool isRangeInStorage(const void *First, const void *Last) const { 
-     // Use std::less to avoid UB. 
-     std::less<> LessThan; 
-     return !LessThan(First, this->begin()) && !LessThan(Last, First) && 
-            !LessThan(this->end(), Last); 
-   } 
-   
-   /// Return true unless Elt will be invalidated by resizing the vector to 
-   /// NewSize. 
-   bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { 
-     // Past the end. 
-     if (LLVM_LIKELY(!isReferenceToStorage(Elt))) 
-       return true; 
-   
-     // Return false if Elt will be destroyed by shrinking. 
-     if (NewSize <= this->size()) 
-       return Elt < this->begin() + NewSize; 
-   
-     // Return false if we need to grow. 
-     return NewSize <= this->capacity(); 
-   } 
-   
-   /// Check whether Elt will be invalidated by resizing the vector to NewSize. 
-   void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { 
-     assert(isSafeToReferenceAfterResize(Elt, NewSize) && 
-            "Attempting to reference an element of the vector in an operation " 
-            "that invalidates it"); 
-   } 
-   
-   /// Check whether Elt will be invalidated by increasing the size of the 
-   /// vector by N. 
-   void assertSafeToAdd(const void *Elt, size_t N = 1) { 
-     this->assertSafeToReferenceAfterResize(Elt, this->size() + N); 
-   } 
-   
-   /// Check whether any part of the range will be invalidated by clearing. 
-   void assertSafeToReferenceAfterClear(const T *From, const T *To) { 
-     if (From == To) 
-       return; 
-     this->assertSafeToReferenceAfterResize(From, 0); 
-     this->assertSafeToReferenceAfterResize(To - 1, 0); 
-   } 
-   template < 
-       class ItTy, 
-       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, 
-                        bool> = false> 
-   void assertSafeToReferenceAfterClear(ItTy, ItTy) {} 
-   
-   /// Check whether any part of the range will be invalidated by growing. 
-   void assertSafeToAddRange(const T *From, const T *To) { 
-     if (From == To) 
-       return; 
-     this->assertSafeToAdd(From, To - From); 
-     this->assertSafeToAdd(To - 1, To - From); 
-   } 
-   template < 
-       class ItTy, 
-       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, 
-                        bool> = false> 
-   void assertSafeToAddRange(ItTy, ItTy) {} 
-   
-   /// Reserve enough space to add one element, and return the updated element 
-   /// pointer in case it was a reference to the storage. 
-   template <class U> 
-   static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, 
-                                                    size_t N) { 
-     size_t NewSize = This->size() + N; 
-     if (LLVM_LIKELY(NewSize <= This->capacity())) 
-       return &Elt; 
-   
-     bool ReferencesStorage = false; 
-     int64_t Index = -1; 
-     if (!U::TakesParamByValue) { 
-       if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { 
-         ReferencesStorage = true; 
-         Index = &Elt - This->begin(); 
-       } 
-     } 
-     This->grow(NewSize); 
-     return ReferencesStorage ? This->begin() + Index : &Elt; 
-   } 
-   
- public: 
-   using size_type = size_t; 
-   using difference_type = ptrdiff_t; 
-   using value_type = T; 
-   using iterator = T *; 
-   using const_iterator = const T *; 
-   
-   using const_reverse_iterator = std::reverse_iterator<const_iterator>; 
-   using reverse_iterator = std::reverse_iterator<iterator>; 
-   
-   using reference = T &; 
-   using const_reference = const T &; 
-   using pointer = T *; 
-   using const_pointer = const T *; 
-   
-   using Base::capacity; 
-   using Base::empty; 
-   using Base::size; 
-   
-   // forward iterator creation methods. 
-   iterator begin() { return (iterator)this->BeginX; } 
-   const_iterator begin() const { return (const_iterator)this->BeginX; } 
-   iterator end() { return begin() + size(); } 
-   const_iterator end() const { return begin() + size(); } 
-   
-   // reverse iterator creation methods. 
-   reverse_iterator rbegin()            { return reverse_iterator(end()); } 
-   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } 
-   reverse_iterator rend()              { return reverse_iterator(begin()); } 
-   const_reverse_iterator rend() const { return const_reverse_iterator(begin());} 
-   
-   size_type size_in_bytes() const { return size() * sizeof(T); } 
-   size_type max_size() const { 
-     return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); 
-   } 
-   
-   size_t capacity_in_bytes() const { return capacity() * sizeof(T); } 
-   
-   /// Return a pointer to the vector's buffer, even if empty(). 
-   pointer data() { return pointer(begin()); } 
-   /// Return a pointer to the vector's buffer, even if empty(). 
-   const_pointer data() const { return const_pointer(begin()); } 
-   
-   reference operator[](size_type idx) { 
-     assert(idx < size()); 
-     return begin()[idx]; 
-   } 
-   const_reference operator[](size_type idx) const { 
-     assert(idx < size()); 
-     return begin()[idx]; 
-   } 
-   
-   reference front() { 
-     assert(!empty()); 
-     return begin()[0]; 
-   } 
-   const_reference front() const { 
-     assert(!empty()); 
-     return begin()[0]; 
-   } 
-   
-   reference back() { 
-     assert(!empty()); 
-     return end()[-1]; 
-   } 
-   const_reference back() const { 
-     assert(!empty()); 
-     return end()[-1]; 
-   } 
- }; 
-   
- /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put 
- /// method implementations that are designed to work with non-trivial T's. 
- /// 
- /// We approximate is_trivially_copyable with trivial move/copy construction and 
- /// trivial destruction. While the standard doesn't specify that you're allowed 
- /// copy these types with memcpy, there is no way for the type to observe this. 
- /// This catches the important case of std::pair<POD, POD>, which is not 
- /// trivially assignable. 
- template <typename T, bool = (is_trivially_copy_constructible<T>::value) && 
-                              (is_trivially_move_constructible<T>::value) && 
-                              std::is_trivially_destructible<T>::value> 
- class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { 
-   friend class SmallVectorTemplateCommon<T>; 
-   
- protected: 
-   static constexpr bool TakesParamByValue = false; 
-   using ValueParamT = const T &; 
-   
-   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} 
-   
-   static void destroy_range(T *S, T *E) { 
-     while (S != E) { 
-       --E; 
-       E->~T(); 
-     } 
-   } 
-   
-   /// Move the range [I, E) into the uninitialized memory starting with "Dest", 
-   /// constructing elements as needed. 
-   template<typename It1, typename It2> 
-   static void uninitialized_move(It1 I, It1 E, It2 Dest) { 
-     std::uninitialized_move(I, E, Dest); 
-   } 
-   
-   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", 
-   /// constructing elements as needed. 
-   template<typename It1, typename It2> 
-   static void uninitialized_copy(It1 I, It1 E, It2 Dest) { 
-     std::uninitialized_copy(I, E, Dest); 
-   } 
-   
-   /// Grow the allocated memory (without initializing new elements), doubling 
-   /// the size of the allocated memory. Guarantees space for at least one more 
-   /// element, or MinSize more elements if specified. 
-   void grow(size_t MinSize = 0); 
-   
-   /// Create a new allocation big enough for \p MinSize and pass back its size 
-   /// in \p NewCapacity. This is the first section of \a grow(). 
-   T *mallocForGrow(size_t MinSize, size_t &NewCapacity); 
-   
-   /// Move existing elements over to the new allocation \p NewElts, the middle 
-   /// section of \a grow(). 
-   void moveElementsForGrow(T *NewElts); 
-   
-   /// Transfer ownership of the allocation, finishing up \a grow(). 
-   void takeAllocationForGrow(T *NewElts, size_t NewCapacity); 
-   
-   /// Reserve enough space to add one element, and return the updated element 
-   /// pointer in case it was a reference to the storage. 
-   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { 
-     return this->reserveForParamAndGetAddressImpl(this, Elt, N); 
-   } 
-   
-   /// Reserve enough space to add one element, and return the updated element 
-   /// pointer in case it was a reference to the storage. 
-   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { 
-     return const_cast<T *>( 
-         this->reserveForParamAndGetAddressImpl(this, Elt, N)); 
-   } 
-   
-   static T &&forward_value_param(T &&V) { return std::move(V); } 
-   static const T &forward_value_param(const T &V) { return V; } 
-   
-   void growAndAssign(size_t NumElts, const T &Elt) { 
-     // Grow manually in case Elt is an internal reference. 
-     size_t NewCapacity; 
-     T *NewElts = mallocForGrow(NumElts, NewCapacity); 
-     std::uninitialized_fill_n(NewElts, NumElts, Elt); 
-     this->destroy_range(this->begin(), this->end()); 
-     takeAllocationForGrow(NewElts, NewCapacity); 
-     this->set_size(NumElts); 
-   } 
-   
-   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { 
-     // Grow manually in case one of Args is an internal reference. 
-     size_t NewCapacity; 
-     T *NewElts = mallocForGrow(0, NewCapacity); 
-     ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); 
-     moveElementsForGrow(NewElts); 
-     takeAllocationForGrow(NewElts, NewCapacity); 
-     this->set_size(this->size() + 1); 
-     return this->back(); 
-   } 
-   
- public: 
-   void push_back(const T &Elt) { 
-     const T *EltPtr = reserveForParamAndGetAddress(Elt); 
-     ::new ((void *)this->end()) T(*EltPtr); 
-     this->set_size(this->size() + 1); 
-   } 
-   
-   void push_back(T &&Elt) { 
-     T *EltPtr = reserveForParamAndGetAddress(Elt); 
-     ::new ((void *)this->end()) T(::std::move(*EltPtr)); 
-     this->set_size(this->size() + 1); 
-   } 
-   
-   void pop_back() { 
-     this->set_size(this->size() - 1); 
-     this->end()->~T(); 
-   } 
- }; 
-   
- // Define this out-of-line to dissuade the C++ compiler from inlining it. 
- template <typename T, bool TriviallyCopyable> 
- void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { 
-   size_t NewCapacity; 
-   T *NewElts = mallocForGrow(MinSize, NewCapacity); 
-   moveElementsForGrow(NewElts); 
-   takeAllocationForGrow(NewElts, NewCapacity); 
- } 
-   
- template <typename T, bool TriviallyCopyable> 
- T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( 
-     size_t MinSize, size_t &NewCapacity) { 
-   return static_cast<T *>( 
-       SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( 
-           this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); 
- } 
-   
- // Define this out-of-line to dissuade the C++ compiler from inlining it. 
- template <typename T, bool TriviallyCopyable> 
- void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( 
-     T *NewElts) { 
-   // Move the elements over. 
-   this->uninitialized_move(this->begin(), this->end(), NewElts); 
-   
-   // Destroy the original elements. 
-   destroy_range(this->begin(), this->end()); 
- } 
-   
- // Define this out-of-line to dissuade the C++ compiler from inlining it. 
- template <typename T, bool TriviallyCopyable> 
- void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( 
-     T *NewElts, size_t NewCapacity) { 
-   // If this wasn't grown from the inline copy, deallocate the old space. 
-   if (!this->isSmall()) 
-     free(this->begin()); 
-   
-   this->BeginX = NewElts; 
-   this->Capacity = NewCapacity; 
- } 
-   
- /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put 
- /// method implementations that are designed to work with trivially copyable 
- /// T's. This allows using memcpy in place of copy/move construction and 
- /// skipping destruction. 
- template <typename T> 
- class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { 
-   friend class SmallVectorTemplateCommon<T>; 
-   
- protected: 
-   /// True if it's cheap enough to take parameters by value. Doing so avoids 
-   /// overhead related to mitigations for reference invalidation. 
-   static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); 
-   
-   /// Either const T& or T, depending on whether it's cheap enough to take 
-   /// parameters by value. 
-   using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>; 
-   
-   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} 
-   
-   // No need to do a destroy loop for POD's. 
-   static void destroy_range(T *, T *) {} 
-   
-   /// Move the range [I, E) onto the uninitialized memory 
-   /// starting with "Dest", constructing elements into it as needed. 
-   template<typename It1, typename It2> 
-   static void uninitialized_move(It1 I, It1 E, It2 Dest) { 
-     // Just do a copy. 
-     uninitialized_copy(I, E, Dest); 
-   } 
-   
-   /// Copy the range [I, E) onto the uninitialized memory 
-   /// starting with "Dest", constructing elements into it as needed. 
-   template<typename It1, typename It2> 
-   static void uninitialized_copy(It1 I, It1 E, It2 Dest) { 
-     // Arbitrary iterator types; just use the basic implementation. 
-     std::uninitialized_copy(I, E, Dest); 
-   } 
-   
-   /// Copy the range [I, E) onto the uninitialized memory 
-   /// starting with "Dest", constructing elements into it as needed. 
-   template <typename T1, typename T2> 
-   static void uninitialized_copy( 
-       T1 *I, T1 *E, T2 *Dest, 
-       std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = 
-           nullptr) { 
-     // Use memcpy for PODs iterated by pointers (which includes SmallVector 
-     // iterators): std::uninitialized_copy optimizes to memmove, but we can 
-     // use memcpy here. Note that I and E are iterators and thus might be 
-     // invalid for memcpy if they are equal. 
-     if (I != E) 
-       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); 
-   } 
-   
-   /// Double the size of the allocated memory, guaranteeing space for at 
-   /// least one more element or MinSize if specified. 
-   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } 
-   
-   /// Reserve enough space to add one element, and return the updated element 
-   /// pointer in case it was a reference to the storage. 
-   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { 
-     return this->reserveForParamAndGetAddressImpl(this, Elt, N); 
-   } 
-   
-   /// Reserve enough space to add one element, and return the updated element 
-   /// pointer in case it was a reference to the storage. 
-   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { 
-     return const_cast<T *>( 
-         this->reserveForParamAndGetAddressImpl(this, Elt, N)); 
-   } 
-   
-   /// Copy \p V or return a reference, depending on \a ValueParamT. 
-   static ValueParamT forward_value_param(ValueParamT V) { return V; } 
-   
-   void growAndAssign(size_t NumElts, T Elt) { 
-     // Elt has been copied in case it's an internal reference, side-stepping 
-     // reference invalidation problems without losing the realloc optimization. 
-     this->set_size(0); 
-     this->grow(NumElts); 
-     std::uninitialized_fill_n(this->begin(), NumElts, Elt); 
-     this->set_size(NumElts); 
-   } 
-   
-   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { 
-     // Use push_back with a copy in case Args has an internal reference, 
-     // side-stepping reference invalidation problems without losing the realloc 
-     // optimization. 
-     push_back(T(std::forward<ArgTypes>(Args)...)); 
-     return this->back(); 
-   } 
-   
- public: 
-   void push_back(ValueParamT Elt) { 
-     const T *EltPtr = reserveForParamAndGetAddress(Elt); 
-     memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); 
-     this->set_size(this->size() + 1); 
-   } 
-   
-   void pop_back() { this->set_size(this->size() - 1); } 
- }; 
-   
- /// This class consists of common code factored out of the SmallVector class to 
- /// reduce code duplication based on the SmallVector 'N' template parameter. 
- template <typename T> 
- class SmallVectorImpl : public SmallVectorTemplateBase<T> { 
-   using SuperClass = SmallVectorTemplateBase<T>; 
-   
- public: 
-   using iterator = typename SuperClass::iterator; 
-   using const_iterator = typename SuperClass::const_iterator; 
-   using reference = typename SuperClass::reference; 
-   using size_type = typename SuperClass::size_type; 
-   
- protected: 
-   using SmallVectorTemplateBase<T>::TakesParamByValue; 
-   using ValueParamT = typename SuperClass::ValueParamT; 
-   
-   // Default ctor - Initialize to empty. 
-   explicit SmallVectorImpl(unsigned N) 
-       : SmallVectorTemplateBase<T>(N) {} 
-   
-   void assignRemote(SmallVectorImpl &&RHS) { 
-     this->destroy_range(this->begin(), this->end()); 
-     if (!this->isSmall()) 
-       free(this->begin()); 
-     this->BeginX = RHS.BeginX; 
-     this->Size = RHS.Size; 
-     this->Capacity = RHS.Capacity; 
-     RHS.resetToSmall(); 
-   } 
-   
- public: 
-   SmallVectorImpl(const SmallVectorImpl &) = delete; 
-   
-   ~SmallVectorImpl() { 
-     // Subclass has already destructed this vector's elements. 
-     // If this wasn't grown from the inline copy, deallocate the old space. 
-     if (!this->isSmall()) 
-       free(this->begin()); 
-   } 
-   
-   void clear() { 
-     this->destroy_range(this->begin(), this->end()); 
-     this->Size = 0; 
-   } 
-   
- private: 
-   // Make set_size() private to avoid misuse in subclasses. 
-   using SuperClass::set_size; 
-   
-   template <bool ForOverwrite> void resizeImpl(size_type N) { 
-     if (N == this->size()) 
-       return; 
-   
-     if (N < this->size()) { 
-       this->truncate(N); 
-       return; 
-     } 
-   
-     this->reserve(N); 
-     for (auto I = this->end(), E = this->begin() + N; I != E; ++I) 
-       if (ForOverwrite) 
-         new (&*I) T; 
-       else 
-         new (&*I) T(); 
-     this->set_size(N); 
-   } 
-   
- public: 
-   void resize(size_type N) { resizeImpl<false>(N); } 
-   
-   /// Like resize, but \ref T is POD, the new values won't be initialized. 
-   void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } 
-   
-   /// Like resize, but requires that \p N is less than \a size(). 
-   void truncate(size_type N) { 
-     assert(this->size() >= N && "Cannot increase size with truncate"); 
-     this->destroy_range(this->begin() + N, this->end()); 
-     this->set_size(N); 
-   } 
-   
-   void resize(size_type N, ValueParamT NV) { 
-     if (N == this->size()) 
-       return; 
-   
-     if (N < this->size()) { 
-       this->truncate(N); 
-       return; 
-     } 
-   
-     // N > this->size(). Defer to append. 
-     this->append(N - this->size(), NV); 
-   } 
-   
-   void reserve(size_type N) { 
-     if (this->capacity() < N) 
-       this->grow(N); 
-   } 
-   
-   void pop_back_n(size_type NumItems) { 
-     assert(this->size() >= NumItems); 
-     truncate(this->size() - NumItems); 
-   } 
-   
-   [[nodiscard]] T pop_back_val() { 
-     T Result = ::std::move(this->back()); 
-     this->pop_back(); 
-     return Result; 
-   } 
-   
-   void swap(SmallVectorImpl &RHS); 
-   
-   /// Add the specified range to the end of the SmallVector. 
-   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 
-   void append(ItTy in_start, ItTy in_end) { 
-     this->assertSafeToAddRange(in_start, in_end); 
-     size_type NumInputs = std::distance(in_start, in_end); 
-     this->reserve(this->size() + NumInputs); 
-     this->uninitialized_copy(in_start, in_end, this->end()); 
-     this->set_size(this->size() + NumInputs); 
-   } 
-   
-   /// Append \p NumInputs copies of \p Elt to the end. 
-   void append(size_type NumInputs, ValueParamT Elt) { 
-     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); 
-     std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); 
-     this->set_size(this->size() + NumInputs); 
-   } 
-   
-   void append(std::initializer_list<T> IL) { 
-     append(IL.begin(), IL.end()); 
-   } 
-   
-   void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } 
-   
-   void assign(size_type NumElts, ValueParamT Elt) { 
-     // Note that Elt could be an internal reference. 
-     if (NumElts > this->capacity()) { 
-       this->growAndAssign(NumElts, Elt); 
-       return; 
-     } 
-   
-     // Assign over existing elements. 
-     std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); 
-     if (NumElts > this->size()) 
-       std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); 
-     else if (NumElts < this->size()) 
-       this->destroy_range(this->begin() + NumElts, this->end()); 
-     this->set_size(NumElts); 
-   } 
-   
-   // FIXME: Consider assigning over existing elements, rather than clearing & 
-   // re-initializing them - for all assign(...) variants. 
-   
-   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 
-   void assign(ItTy in_start, ItTy in_end) { 
-     this->assertSafeToReferenceAfterClear(in_start, in_end); 
-     clear(); 
-     append(in_start, in_end); 
-   } 
-   
-   void assign(std::initializer_list<T> IL) { 
-     clear(); 
-     append(IL); 
-   } 
-   
-   void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } 
-   
-   iterator erase(const_iterator CI) { 
-     // Just cast away constness because this is a non-const member function. 
-     iterator I = const_cast<iterator>(CI); 
-   
-     assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds."); 
-   
-     iterator N = I; 
-     // Shift all elts down one. 
-     std::move(I+1, this->end(), I); 
-     // Drop the last elt. 
-     this->pop_back(); 
-     return(N); 
-   } 
-   
-   iterator erase(const_iterator CS, const_iterator CE) { 
-     // Just cast away constness because this is a non-const member function. 
-     iterator S = const_cast<iterator>(CS); 
-     iterator E = const_cast<iterator>(CE); 
-   
-     assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); 
-   
-     iterator N = S; 
-     // Shift all elts down. 
-     iterator I = std::move(E, this->end(), S); 
-     // Drop the last elts. 
-     this->destroy_range(I, this->end()); 
-     this->set_size(I - this->begin()); 
-     return(N); 
-   } 
-   
- private: 
-   template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { 
-     // Callers ensure that ArgType is derived from T. 
-     static_assert( 
-         std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, 
-                      T>::value, 
-         "ArgType must be derived from T!"); 
-   
-     if (I == this->end()) {  // Important special case for empty vector. 
-       this->push_back(::std::forward<ArgType>(Elt)); 
-       return this->end()-1; 
-     } 
-   
-     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); 
-   
-     // Grow if necessary. 
-     size_t Index = I - this->begin(); 
-     std::remove_reference_t<ArgType> *EltPtr = 
-         this->reserveForParamAndGetAddress(Elt); 
-     I = this->begin() + Index; 
-   
-     ::new ((void*) this->end()) T(::std::move(this->back())); 
-     // Push everything else over. 
-     std::move_backward(I, this->end()-1, this->end()); 
-     this->set_size(this->size() + 1); 
-   
-     // If we just moved the element we're inserting, be sure to update 
-     // the reference (never happens if TakesParamByValue). 
-     static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, 
-                   "ArgType must be 'T' when taking by value!"); 
-     if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) 
-       ++EltPtr; 
-   
-     *I = ::std::forward<ArgType>(*EltPtr); 
-     return I; 
-   } 
-   
- public: 
-   iterator insert(iterator I, T &&Elt) { 
-     return insert_one_impl(I, this->forward_value_param(std::move(Elt))); 
-   } 
-   
-   iterator insert(iterator I, const T &Elt) { 
-     return insert_one_impl(I, this->forward_value_param(Elt)); 
-   } 
-   
-   iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { 
-     // Convert iterator to elt# to avoid invalidating iterator when we reserve() 
-     size_t InsertElt = I - this->begin(); 
-   
-     if (I == this->end()) {  // Important special case for empty vector. 
-       append(NumToInsert, Elt); 
-       return this->begin()+InsertElt; 
-     } 
-   
-     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); 
-   
-     // Ensure there is enough space, and get the (maybe updated) address of 
-     // Elt. 
-     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); 
-   
-     // Uninvalidate the iterator. 
-     I = this->begin()+InsertElt; 
-   
-     // If there are more elements between the insertion point and the end of the 
-     // range than there are being inserted, we can use a simple approach to 
-     // insertion.  Since we already reserved space, we know that this won't 
-     // reallocate the vector. 
-     if (size_t(this->end()-I) >= NumToInsert) { 
-       T *OldEnd = this->end(); 
-       append(std::move_iterator<iterator>(this->end() - NumToInsert), 
-              std::move_iterator<iterator>(this->end())); 
-   
-       // Copy the existing elements that get replaced. 
-       std::move_backward(I, OldEnd-NumToInsert, OldEnd); 
-   
-       // If we just moved the element we're inserting, be sure to update 
-       // the reference (never happens if TakesParamByValue). 
-       if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) 
-         EltPtr += NumToInsert; 
-   
-       std::fill_n(I, NumToInsert, *EltPtr); 
-       return I; 
-     } 
-   
-     // Otherwise, we're inserting more elements than exist already, and we're 
-     // not inserting at the end. 
-   
-     // Move over the elements that we're about to overwrite. 
-     T *OldEnd = this->end(); 
-     this->set_size(this->size() + NumToInsert); 
-     size_t NumOverwritten = OldEnd-I; 
-     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); 
-   
-     // If we just moved the element we're inserting, be sure to update 
-     // the reference (never happens if TakesParamByValue). 
-     if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) 
-       EltPtr += NumToInsert; 
-   
-     // Replace the overwritten part. 
-     std::fill_n(I, NumOverwritten, *EltPtr); 
-   
-     // Insert the non-overwritten middle part. 
-     std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); 
-     return I; 
-   } 
-   
-   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 
-   iterator insert(iterator I, ItTy From, ItTy To) { 
-     // Convert iterator to elt# to avoid invalidating iterator when we reserve() 
-     size_t InsertElt = I - this->begin(); 
-   
-     if (I == this->end()) {  // Important special case for empty vector. 
-       append(From, To); 
-       return this->begin()+InsertElt; 
-     } 
-   
-     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); 
-   
-     // Check that the reserve that follows doesn't invalidate the iterators. 
-     this->assertSafeToAddRange(From, To); 
-   
-     size_t NumToInsert = std::distance(From, To); 
-   
-     // Ensure there is enough space. 
-     reserve(this->size() + NumToInsert); 
-   
-     // Uninvalidate the iterator. 
-     I = this->begin()+InsertElt; 
-   
-     // If there are more elements between the insertion point and the end of the 
-     // range than there are being inserted, we can use a simple approach to 
-     // insertion.  Since we already reserved space, we know that this won't 
-     // reallocate the vector. 
-     if (size_t(this->end()-I) >= NumToInsert) { 
-       T *OldEnd = this->end(); 
-       append(std::move_iterator<iterator>(this->end() - NumToInsert), 
-              std::move_iterator<iterator>(this->end())); 
-   
-       // Copy the existing elements that get replaced. 
-       std::move_backward(I, OldEnd-NumToInsert, OldEnd); 
-   
-       std::copy(From, To, I); 
-       return I; 
-     } 
-   
-     // Otherwise, we're inserting more elements than exist already, and we're 
-     // not inserting at the end. 
-   
-     // Move over the elements that we're about to overwrite. 
-     T *OldEnd = this->end(); 
-     this->set_size(this->size() + NumToInsert); 
-     size_t NumOverwritten = OldEnd-I; 
-     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); 
-   
-     // Replace the overwritten part. 
-     for (T *J = I; NumOverwritten > 0; --NumOverwritten) { 
-       *J = *From; 
-       ++J; ++From; 
-     } 
-   
-     // Insert the non-overwritten middle part. 
-     this->uninitialized_copy(From, To, OldEnd); 
-     return I; 
-   } 
-   
-   void insert(iterator I, std::initializer_list<T> IL) { 
-     insert(I, IL.begin(), IL.end()); 
-   } 
-   
-   template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { 
-     if (LLVM_UNLIKELY(this->size() >= this->capacity())) 
-       return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); 
-   
-     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); 
-     this->set_size(this->size() + 1); 
-     return this->back(); 
-   } 
-   
-   SmallVectorImpl &operator=(const SmallVectorImpl &RHS); 
-   
-   SmallVectorImpl &operator=(SmallVectorImpl &&RHS); 
-   
-   bool operator==(const SmallVectorImpl &RHS) const { 
-     if (this->size() != RHS.size()) return false; 
-     return std::equal(this->begin(), this->end(), RHS.begin()); 
-   } 
-   bool operator!=(const SmallVectorImpl &RHS) const { 
-     return !(*this == RHS); 
-   } 
-   
-   bool operator<(const SmallVectorImpl &RHS) const { 
-     return std::lexicographical_compare(this->begin(), this->end(), 
-                                         RHS.begin(), RHS.end()); 
-   } 
-   bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } 
-   bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } 
-   bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } 
- }; 
-   
- template <typename T> 
- void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { 
-   if (this == &RHS) return; 
-   
-   // We can only avoid copying elements if neither vector is small. 
-   if (!this->isSmall() && !RHS.isSmall()) { 
-     std::swap(this->BeginX, RHS.BeginX); 
-     std::swap(this->Size, RHS.Size); 
-     std::swap(this->Capacity, RHS.Capacity); 
-     return; 
-   } 
-   this->reserve(RHS.size()); 
-   RHS.reserve(this->size()); 
-   
-   // Swap the shared elements. 
-   size_t NumShared = this->size(); 
-   if (NumShared > RHS.size()) NumShared = RHS.size(); 
-   for (size_type i = 0; i != NumShared; ++i) 
-     std::swap((*this)[i], RHS[i]); 
-   
-   // Copy over the extra elts. 
-   if (this->size() > RHS.size()) { 
-     size_t EltDiff = this->size() - RHS.size(); 
-     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); 
-     RHS.set_size(RHS.size() + EltDiff); 
-     this->destroy_range(this->begin()+NumShared, this->end()); 
-     this->set_size(NumShared); 
-   } else if (RHS.size() > this->size()) { 
-     size_t EltDiff = RHS.size() - this->size(); 
-     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); 
-     this->set_size(this->size() + EltDiff); 
-     this->destroy_range(RHS.begin()+NumShared, RHS.end()); 
-     RHS.set_size(NumShared); 
-   } 
- } 
-   
- template <typename T> 
- SmallVectorImpl<T> &SmallVectorImpl<T>:: 
-   operator=(const SmallVectorImpl<T> &RHS) { 
-   // Avoid self-assignment. 
-   if (this == &RHS) return *this; 
-   
-   // If we already have sufficient space, assign the common elements, then 
-   // destroy any excess. 
-   size_t RHSSize = RHS.size(); 
-   size_t CurSize = this->size(); 
-   if (CurSize >= RHSSize) { 
-     // Assign common elements. 
-     iterator NewEnd; 
-     if (RHSSize) 
-       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); 
-     else 
-       NewEnd = this->begin(); 
-   
-     // Destroy excess elements. 
-     this->destroy_range(NewEnd, this->end()); 
-   
-     // Trim. 
-     this->set_size(RHSSize); 
-     return *this; 
-   } 
-   
-   // If we have to grow to have enough elements, destroy the current elements. 
-   // This allows us to avoid copying them during the grow. 
-   // FIXME: don't do this if they're efficiently moveable. 
-   if (this->capacity() < RHSSize) { 
-     // Destroy current elements. 
-     this->clear(); 
-     CurSize = 0; 
-     this->grow(RHSSize); 
-   } else if (CurSize) { 
-     // Otherwise, use assignment for the already-constructed elements. 
-     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); 
-   } 
-   
-   // Copy construct the new elements in place. 
-   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), 
-                            this->begin()+CurSize); 
-   
-   // Set end. 
-   this->set_size(RHSSize); 
-   return *this; 
- } 
-   
- template <typename T> 
- SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { 
-   // Avoid self-assignment. 
-   if (this == &RHS) return *this; 
-   
-   // If the RHS isn't small, clear this vector and then steal its buffer. 
-   if (!RHS.isSmall()) { 
-     this->assignRemote(std::move(RHS)); 
-     return *this; 
-   } 
-   
-   // If we already have sufficient space, assign the common elements, then 
-   // destroy any excess. 
-   size_t RHSSize = RHS.size(); 
-   size_t CurSize = this->size(); 
-   if (CurSize >= RHSSize) { 
-     // Assign common elements. 
-     iterator NewEnd = this->begin(); 
-     if (RHSSize) 
-       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); 
-   
-     // Destroy excess elements and trim the bounds. 
-     this->destroy_range(NewEnd, this->end()); 
-     this->set_size(RHSSize); 
-   
-     // Clear the RHS. 
-     RHS.clear(); 
-   
-     return *this; 
-   } 
-   
-   // If we have to grow to have enough elements, destroy the current elements. 
-   // This allows us to avoid copying them during the grow. 
-   // FIXME: this may not actually make any sense if we can efficiently move 
-   // elements. 
-   if (this->capacity() < RHSSize) { 
-     // Destroy current elements. 
-     this->clear(); 
-     CurSize = 0; 
-     this->grow(RHSSize); 
-   } else if (CurSize) { 
-     // Otherwise, use assignment for the already-constructed elements. 
-     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); 
-   } 
-   
-   // Move-construct the new elements in place. 
-   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), 
-                            this->begin()+CurSize); 
-   
-   // Set end. 
-   this->set_size(RHSSize); 
-   
-   RHS.clear(); 
-   return *this; 
- } 
-   
- /// Storage for the SmallVector elements.  This is specialized for the N=0 case 
- /// to avoid allocating unnecessary storage. 
- template <typename T, unsigned N> 
- struct SmallVectorStorage { 
-   alignas(T) char InlineElts[N * sizeof(T)]; 
- }; 
-   
- /// We need the storage to be properly aligned even for small-size of 0 so that 
- /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is 
- /// well-defined. 
- template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; 
-   
- /// Forward declaration of SmallVector so that 
- /// calculateSmallVectorDefaultInlinedElements can reference 
- /// `sizeof(SmallVector<T, 0>)`. 
- template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector; 
-   
- /// Helper class for calculating the default number of inline elements for 
- /// `SmallVector<T>`. 
- /// 
- /// This should be migrated to a constexpr function when our minimum 
- /// compiler support is enough for multi-statement constexpr functions. 
- template <typename T> struct CalculateSmallVectorDefaultInlinedElements { 
-   // Parameter controlling the default number of inlined elements 
-   // for `SmallVector<T>`. 
-   // 
-   // The default number of inlined elements ensures that 
-   // 1. There is at least one inlined element. 
-   // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless 
-   // it contradicts 1. 
-   static constexpr size_t kPreferredSmallVectorSizeof = 64; 
-   
-   // static_assert that sizeof(T) is not "too big". 
-   // 
-   // Because our policy guarantees at least one inlined element, it is possible 
-   // for an arbitrarily large inlined element to allocate an arbitrarily large 
-   // amount of inline storage. We generally consider it an antipattern for a 
-   // SmallVector to allocate an excessive amount of inline storage, so we want 
-   // to call attention to these cases and make sure that users are making an 
-   // intentional decision if they request a lot of inline storage. 
-   // 
-   // We want this assertion to trigger in pathological cases, but otherwise 
-   // not be too easy to hit. To accomplish that, the cutoff is actually somewhat 
-   // larger than kPreferredSmallVectorSizeof (otherwise, 
-   // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that 
-   // pattern seems useful in practice). 
-   // 
-   // One wrinkle is that this assertion is in theory non-portable, since 
-   // sizeof(T) is in general platform-dependent. However, we don't expect this 
-   // to be much of an issue, because most LLVM development happens on 64-bit 
-   // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for 
-   // 32-bit hosts, dodging the issue. The reverse situation, where development 
-   // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a 
-   // 64-bit host, is expected to be very rare. 
-   static_assert( 
-       sizeof(T) <= 256, 
-       "You are trying to use a default number of inlined elements for " 
-       "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " 
-       "explicit number of inlined elements with `SmallVector<T, N>` to make " 
-       "sure you really want that much inline storage."); 
-   
-   // Discount the size of the header itself when calculating the maximum inline 
-   // bytes. 
-   static constexpr size_t PreferredInlineBytes = 
-       kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); 
-   static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); 
-   static constexpr size_t value = 
-       NumElementsThatFit == 0 ? 1 : NumElementsThatFit; 
- }; 
-   
- /// This is a 'vector' (really, a variable-sized array), optimized 
- /// for the case when the array is small.  It contains some number of elements 
- /// in-place, which allows it to avoid heap allocation when the actual number of 
- /// elements is below that threshold.  This allows normal "small" cases to be 
- /// fast without losing generality for large inputs. 
- /// 
- /// \note 
- /// In the absence of a well-motivated choice for the number of inlined 
- /// elements \p N, it is recommended to use \c SmallVector<T> (that is, 
- /// omitting the \p N). This will choose a default number of inlined elements 
- /// reasonable for allocation on the stack (for example, trying to keep \c 
- /// sizeof(SmallVector<T>) around 64 bytes). 
- /// 
- /// \warning This does not attempt to be exception safe. 
- /// 
- /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h 
- template <typename T, 
-           unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> 
- class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, 
-                                    SmallVectorStorage<T, N> { 
- public: 
-   SmallVector() : SmallVectorImpl<T>(N) {} 
-   
-   ~SmallVector() { 
-     // Destroy the constructed elements in the vector. 
-     this->destroy_range(this->begin(), this->end()); 
-   } 
-   
-   explicit SmallVector(size_t Size, const T &Value = T()) 
-     : SmallVectorImpl<T>(N) { 
-     this->assign(Size, Value); 
-   } 
-   
-   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 
-   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { 
-     this->append(S, E); 
-   } 
-   
-   template <typename RangeTy> 
-   explicit SmallVector(const iterator_range<RangeTy> &R) 
-       : SmallVectorImpl<T>(N) { 
-     this->append(R.begin(), R.end()); 
-   } 
-   
-   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { 
-     this->append(IL); 
-   } 
-   
-   template <typename U, 
-             typename = std::enable_if_t<std::is_convertible<U, T>::value>> 
-   explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { 
-     this->append(A.begin(), A.end()); 
-   } 
-   
-   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { 
-     if (!RHS.empty()) 
-       SmallVectorImpl<T>::operator=(RHS); 
-   } 
-   
-   SmallVector &operator=(const SmallVector &RHS) { 
-     SmallVectorImpl<T>::operator=(RHS); 
-     return *this; 
-   } 
-   
-   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { 
-     if (!RHS.empty()) 
-       SmallVectorImpl<T>::operator=(::std::move(RHS)); 
-   } 
-   
-   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { 
-     if (!RHS.empty()) 
-       SmallVectorImpl<T>::operator=(::std::move(RHS)); 
-   } 
-   
-   SmallVector &operator=(SmallVector &&RHS) { 
-     if (N) { 
-       SmallVectorImpl<T>::operator=(::std::move(RHS)); 
-       return *this; 
-     } 
-     // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the 
-     // case. 
-     if (this == &RHS) 
-       return *this; 
-     if (RHS.empty()) { 
-       this->destroy_range(this->begin(), this->end()); 
-       this->Size = 0; 
-     } else { 
-       this->assignRemote(std::move(RHS)); 
-     } 
-     return *this; 
-   } 
-   
-   SmallVector &operator=(SmallVectorImpl<T> &&RHS) { 
-     SmallVectorImpl<T>::operator=(::std::move(RHS)); 
-     return *this; 
-   } 
-   
-   SmallVector &operator=(std::initializer_list<T> IL) { 
-     this->assign(IL); 
-     return *this; 
-   } 
- }; 
-   
- template <typename T, unsigned N> 
- inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { 
-   return X.capacity_in_bytes(); 
- } 
-   
- template <typename RangeType> 
- using ValueTypeFromRangeType = 
-     std::remove_const_t<std::remove_reference_t<decltype(*std::begin( 
-         std::declval<RangeType &>()))>>; 
-   
- /// Given a range of type R, iterate the entire range and return a 
- /// SmallVector with elements of the vector.  This is useful, for example, 
- /// when you want to iterate a range and then sort the results. 
- template <unsigned Size, typename R> 
- SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { 
-   return {std::begin(Range), std::end(Range)}; 
- } 
- template <typename R> 
- SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { 
-   return {std::begin(Range), std::end(Range)}; 
- } 
-   
- template <typename Out, unsigned Size, typename R> 
- SmallVector<Out, Size> to_vector_of(R &&Range) { 
-   return {std::begin(Range), std::end(Range)}; 
- } 
-   
- template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { 
-   return {std::begin(Range), std::end(Range)}; 
- } 
-   
- // Explicit instantiations 
- extern template class llvm::SmallVectorBase<uint32_t>; 
- #if SIZE_MAX > UINT32_MAX 
- extern template class llvm::SmallVectorBase<uint64_t>; 
- #endif 
-   
- } // end namespace llvm 
-   
- namespace std { 
-   
-   /// Implement std::swap in terms of SmallVector swap. 
-   template<typename T> 
-   inline void 
-   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { 
-     LHS.swap(RHS); 
-   } 
-   
-   /// Implement std::swap in terms of SmallVector swap. 
-   template<typename T, unsigned N> 
-   inline void 
-   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { 
-     LHS.swap(RHS); 
-   } 
-   
- } // end namespace std 
-   
- #endif // LLVM_ADT_SMALLVECTOR_H 
-