//===- llvm/ADT/SmallSet.h - 'Normally small' sets --------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines the SmallSet class.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SMALLSET_H
 
#define LLVM_ADT_SMALLSET_H
 
 
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/type_traits.h"
 
#include <cstddef>
 
#include <functional>
 
#include <set>
 
#include <type_traits>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
/// SmallSetIterator - This class implements a const_iterator for SmallSet by
 
/// delegating to the underlying SmallVector or Set iterators.
 
template <typename T, unsigned N, typename C>
 
class SmallSetIterator
 
    : public iterator_facade_base<SmallSetIterator<T, N, C>,
 
                                  std::forward_iterator_tag, T> {
 
private:
 
  using SetIterTy = typename std::set<T, C>::const_iterator;
 
  using VecIterTy = typename SmallVector<T, N>::const_iterator;
 
  using SelfTy = SmallSetIterator<T, N, C>;
 
 
 
  /// Iterators to the parts of the SmallSet containing the data. They are set
 
  /// depending on isSmall.
 
  union {
 
    SetIterTy SetIter;
 
    VecIterTy VecIter;
 
  };
 
 
 
  bool isSmall;
 
 
 
public:
 
  SmallSetIterator(SetIterTy SetIter) : SetIter(SetIter), isSmall(false) {}
 
 
 
  SmallSetIterator(VecIterTy VecIter) : VecIter(VecIter), isSmall(true) {}
 
 
 
  // Spell out destructor, copy/move constructor and assignment operators for
 
  // MSVC STL, where set<T>::const_iterator is not trivially copy constructible.
 
  ~SmallSetIterator() {
 
    if (isSmall)
 
      VecIter.~VecIterTy();
 
    else
 
      SetIter.~SetIterTy();
 
  }
 
 
 
  SmallSetIterator(const SmallSetIterator &Other) : isSmall(Other.isSmall) {
 
    if (isSmall)
 
      VecIter = Other.VecIter;
 
    else
 
      // Use placement new, to make sure SetIter is properly constructed, even
 
      // if it is not trivially copy-able (e.g. in MSVC).
 
      new (&SetIter) SetIterTy(Other.SetIter);
 
  }
 
 
 
  SmallSetIterator(SmallSetIterator &&Other) : isSmall(Other.isSmall) {
 
    if (isSmall)
 
      VecIter = std::move(Other.VecIter);
 
    else
 
      // Use placement new, to make sure SetIter is properly constructed, even
 
      // if it is not trivially copy-able (e.g. in MSVC).
 
      new (&SetIter) SetIterTy(std::move(Other.SetIter));
 
  }
 
 
 
  SmallSetIterator& operator=(const SmallSetIterator& Other) {
 
    // Call destructor for SetIter, so it gets properly destroyed if it is
 
    // not trivially destructible in case we are setting VecIter.
 
    if (!isSmall)
 
      SetIter.~SetIterTy();
 
 
 
    isSmall = Other.isSmall;
 
    if (isSmall)
 
      VecIter = Other.VecIter;
 
    else
 
      new (&SetIter) SetIterTy(Other.SetIter);
 
    return *this;
 
  }
 
 
 
  SmallSetIterator& operator=(SmallSetIterator&& Other) {
 
    // Call destructor for SetIter, so it gets properly destroyed if it is
 
    // not trivially destructible in case we are setting VecIter.
 
    if (!isSmall)
 
      SetIter.~SetIterTy();
 
 
 
    isSmall = Other.isSmall;
 
    if (isSmall)
 
      VecIter = std::move(Other.VecIter);
 
    else
 
      new (&SetIter) SetIterTy(std::move(Other.SetIter));
 
    return *this;
 
  }
 
 
 
  bool operator==(const SmallSetIterator &RHS) const {
 
    if (isSmall != RHS.isSmall)
 
      return false;
 
    if (isSmall)
 
      return VecIter == RHS.VecIter;
 
    return SetIter == RHS.SetIter;
 
  }
 
 
 
  SmallSetIterator &operator++() { // Preincrement
 
    if (isSmall)
 
      VecIter++;
 
    else
 
      SetIter++;
 
    return *this;
 
  }
 
 
 
  const T &operator*() const { return isSmall ? *VecIter : *SetIter; }
 
};
 
 
 
/// SmallSet - This maintains a set of unique values, optimizing for the case
 
/// when the set is small (less than N).  In this case, the set can be
 
/// maintained with no mallocs.  If the set gets large, we expand to using an
 
/// std::set to maintain reasonable lookup times.
 
template <typename T, unsigned N, typename C = std::less<T>>
 
class SmallSet {
 
  /// Use a SmallVector to hold the elements here (even though it will never
 
  /// reach its 'large' stage) to avoid calling the default ctors of elements
 
  /// we will never use.
 
  SmallVector<T, N> Vector;
 
  std::set<T, C> Set;
 
 
 
  using VIterator = typename SmallVector<T, N>::const_iterator;
 
  using SIterator = typename std::set<T, C>::const_iterator;
 
  using mutable_iterator = typename SmallVector<T, N>::iterator;
 
 
 
  // In small mode SmallPtrSet uses linear search for the elements, so it is
 
  // not a good idea to choose this value too high. You may consider using a
 
  // DenseSet<> instead if you expect many elements in the set.
 
  static_assert(N <= 32, "N should be small");
 
 
 
public:
 
  using size_type = size_t;
 
  using const_iterator = SmallSetIterator<T, N, C>;
 
 
 
  SmallSet() = default;
 
 
 
  [[nodiscard]] bool empty() const { return Vector.empty() && Set.empty(); }
 
 
 
  size_type size() const {
 
    return isSmall() ? Vector.size() : Set.size();
 
  }
 
 
 
  /// count - Return 1 if the element is in the set, 0 otherwise.
 
  size_type count(const T &V) const {
 
    if (isSmall()) {
 
      // Since the collection is small, just do a linear search.
 
      return vfind(V) == Vector.end() ? 0 : 1;
 
    } else {
 
      return Set.count(V);
 
    }
 
  }
 
 
 
  /// insert - Insert an element into the set if it isn't already there.
 
  /// Returns a pair. The first value of it is an iterator to the inserted
 
  /// element or the existing element in the set. The second value is true
 
  /// if the element is inserted (it was not in the set before).
 
  std::pair<const_iterator, bool> insert(const T &V) {
 
    if (!isSmall()) {
 
      auto [I, Inserted] = Set.insert(V);
 
      return std::make_pair(const_iterator(I), Inserted);
 
    }
 
 
 
    VIterator I = vfind(V);
 
    if (I != Vector.end())    // Don't reinsert if it already exists.
 
      return std::make_pair(const_iterator(I), false);
 
    if (Vector.size() < N) {
 
      Vector.push_back(V);
 
      return std::make_pair(const_iterator(std::prev(Vector.end())), true);
 
    }
 
 
 
    // Otherwise, grow from vector to set.
 
    while (!Vector.empty()) {
 
      Set.insert(Vector.back());
 
      Vector.pop_back();
 
    }
 
    return std::make_pair(const_iterator(Set.insert(V).first), true);
 
  }
 
 
 
  template <typename IterT>
 
  void insert(IterT I, IterT E) {
 
    for (; I != E; ++I)
 
      insert(*I);
 
  }
 
 
 
  bool erase(const T &V) {
 
    if (!isSmall())
 
      return Set.erase(V);
 
    for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
 
      if (*I == V) {
 
        Vector.erase(I);
 
        return true;
 
      }
 
    return false;
 
  }
 
 
 
  void clear() {
 
    Vector.clear();
 
    Set.clear();
 
  }
 
 
 
  const_iterator begin() const {
 
    if (isSmall())
 
      return {Vector.begin()};
 
    return {Set.begin()};
 
  }
 
 
 
  const_iterator end() const {
 
    if (isSmall())
 
      return {Vector.end()};
 
    return {Set.end()};
 
  }
 
 
 
  /// Check if the SmallSet contains the given element.
 
  bool contains(const T &V) const {
 
    if (isSmall())
 
      return vfind(V) != Vector.end();
 
    return Set.find(V) != Set.end();
 
  }
 
 
 
private:
 
  bool isSmall() const { return Set.empty(); }
 
 
 
  VIterator vfind(const T &V) const {
 
    for (VIterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
 
      if (*I == V)
 
        return I;
 
    return Vector.end();
 
  }
 
};
 
 
 
/// If this set is of pointer values, transparently switch over to using
 
/// SmallPtrSet for performance.
 
template <typename PointeeType, unsigned N>
 
class SmallSet<PointeeType*, N> : public SmallPtrSet<PointeeType*, N> {};
 
 
 
/// Equality comparison for SmallSet.
 
///
 
/// Iterates over elements of LHS confirming that each element is also a member
 
/// of RHS, and that RHS contains no additional values.
 
/// Equivalent to N calls to RHS.count.
 
/// For small-set mode amortized complexity is O(N^2)
 
/// For large-set mode amortized complexity is linear, worst case is O(N^2) (if
 
/// every hash collides).
 
template <typename T, unsigned LN, unsigned RN, typename C>
 
bool operator==(const SmallSet<T, LN, C> &LHS, const SmallSet<T, RN, C> &RHS) {
 
  if (LHS.size() != RHS.size())
 
    return false;
 
 
 
  // All elements in LHS must also be in RHS
 
  return all_of(LHS, [&RHS](const T &E) { return RHS.count(E); });
 
}
 
 
 
/// Inequality comparison for SmallSet.
 
///
 
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
 
template <typename T, unsigned LN, unsigned RN, typename C>
 
bool operator!=(const SmallSet<T, LN, C> &LHS, const SmallSet<T, RN, C> &RHS) {
 
  return !(LHS == RHS);
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_SMALLSET_H