//===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines the SmallPtrSet class.  See the doxygen comment for
 
/// SmallPtrSetImplBase for more details on the algorithm used.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SMALLPTRSET_H
 
#define LLVM_ADT_SMALLPTRSET_H
 
 
 
#include "llvm/ADT/EpochTracker.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/ReverseIteration.h"
 
#include "llvm/Support/type_traits.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdlib>
 
#include <cstring>
 
#include <initializer_list>
 
#include <iterator>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
/// SmallPtrSetImplBase - This is the common code shared among all the
 
/// SmallPtrSet<>'s, which is almost everything.  SmallPtrSet has two modes, one
 
/// for small and one for large sets.
 
///
 
/// Small sets use an array of pointers allocated in the SmallPtrSet object,
 
/// which is treated as a simple array of pointers.  When a pointer is added to
 
/// the set, the array is scanned to see if the element already exists, if not
 
/// the element is 'pushed back' onto the array.  If we run out of space in the
 
/// array, we grow into the 'large set' case.  SmallSet should be used when the
 
/// sets are often small.  In this case, no memory allocation is used, and only
 
/// light-weight and cache-efficient scanning is used.
 
///
 
/// Large sets use a classic exponentially-probed hash table.  Empty buckets are
 
/// represented with an illegal pointer value (-1) to allow null pointers to be
 
/// inserted.  Tombstones are represented with another illegal pointer value
 
/// (-2), to allow deletion.  The hash table is resized when the table is 3/4 or
 
/// more.  When this happens, the table is doubled in size.
 
///
 
class SmallPtrSetImplBase : public DebugEpochBase {
 
  friend class SmallPtrSetIteratorImpl;
 
 
 
protected:
 
  /// SmallArray - Points to a fixed size set of buckets, used in 'small mode'.
 
  const void **SmallArray;
 
  /// CurArray - This is the current set of buckets.  If equal to SmallArray,
 
  /// then the set is in 'small mode'.
 
  const void **CurArray;
 
  /// CurArraySize - The allocated size of CurArray, always a power of two.
 
  unsigned CurArraySize;
 
 
 
  /// Number of elements in CurArray that contain a value or are a tombstone.
 
  /// If small, all these elements are at the beginning of CurArray and the rest
 
  /// is uninitialized.
 
  unsigned NumNonEmpty;
 
  /// Number of tombstones in CurArray.
 
  unsigned NumTombstones;
 
 
 
  // Helpers to copy and move construct a SmallPtrSet.
 
  SmallPtrSetImplBase(const void **SmallStorage,
 
                      const SmallPtrSetImplBase &that);
 
  SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize,
 
                      SmallPtrSetImplBase &&that);
 
 
 
  explicit SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize)
 
      : SmallArray(SmallStorage), CurArray(SmallStorage),
 
        CurArraySize(SmallSize), NumNonEmpty(0), NumTombstones(0) {
 
    assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
 
           "Initial size must be a power of two!");
 
  }
 
 
 
  ~SmallPtrSetImplBase() {
 
    if (!isSmall())
 
      free(CurArray);
 
  }
 
 
 
public:
 
  using size_type = unsigned;
 
 
 
  SmallPtrSetImplBase &operator=(const SmallPtrSetImplBase &) = delete;
 
 
 
  [[nodiscard]] bool empty() const { return size() == 0; }
 
  size_type size() const { return NumNonEmpty - NumTombstones; }
 
 
 
  void clear() {
 
    incrementEpoch();
 
    // If the capacity of the array is huge, and the # elements used is small,
 
    // shrink the array.
 
    if (!isSmall()) {
 
      if (size() * 4 < CurArraySize && CurArraySize > 32)
 
        return shrink_and_clear();
 
      // Fill the array with empty markers.
 
      memset(CurArray, -1, CurArraySize * sizeof(void *));
 
    }
 
 
 
    NumNonEmpty = 0;
 
    NumTombstones = 0;
 
  }
 
 
 
protected:
 
  static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); }
 
 
 
  static void *getEmptyMarker() {
 
    // Note that -1 is chosen to make clear() efficiently implementable with
 
    // memset and because it's not a valid pointer value.
 
    return reinterpret_cast<void*>(-1);
 
  }
 
 
 
  const void **EndPointer() const {
 
    return isSmall() ? CurArray + NumNonEmpty : CurArray + CurArraySize;
 
  }
 
 
 
  /// insert_imp - This returns true if the pointer was new to the set, false if
 
  /// it was already in the set.  This is hidden from the client so that the
 
  /// derived class can check that the right type of pointer is passed in.
 
  std::pair<const void *const *, bool> insert_imp(const void *Ptr) {
 
    if (isSmall()) {
 
      // Check to see if it is already in the set.
 
      const void **LastTombstone = nullptr;
 
      for (const void **APtr = SmallArray, **E = SmallArray + NumNonEmpty;
 
           APtr != E; ++APtr) {
 
        const void *Value = *APtr;
 
        if (Value == Ptr)
 
          return std::make_pair(APtr, false);
 
        if (Value == getTombstoneMarker())
 
          LastTombstone = APtr;
 
      }
 
 
 
      // Did we find any tombstone marker?
 
      if (LastTombstone != nullptr) {
 
        *LastTombstone = Ptr;
 
        --NumTombstones;
 
        incrementEpoch();
 
        return std::make_pair(LastTombstone, true);
 
      }
 
 
 
      // Nope, there isn't.  If we stay small, just 'pushback' now.
 
      if (NumNonEmpty < CurArraySize) {
 
        SmallArray[NumNonEmpty++] = Ptr;
 
        incrementEpoch();
 
        return std::make_pair(SmallArray + (NumNonEmpty - 1), true);
 
      }
 
      // Otherwise, hit the big set case, which will call grow.
 
    }
 
    return insert_imp_big(Ptr);
 
  }
 
 
 
  /// erase_imp - If the set contains the specified pointer, remove it and
 
  /// return true, otherwise return false.  This is hidden from the client so
 
  /// that the derived class can check that the right type of pointer is passed
 
  /// in.
 
  bool erase_imp(const void * Ptr) {
 
    const void *const *P = find_imp(Ptr);
 
    if (P == EndPointer())
 
      return false;
 
 
 
    const void **Loc = const_cast<const void **>(P);
 
    assert(*Loc == Ptr && "broken find!");
 
    *Loc = getTombstoneMarker();
 
    NumTombstones++;
 
    return true;
 
  }
 
 
 
  /// Returns the raw pointer needed to construct an iterator.  If element not
 
  /// found, this will be EndPointer.  Otherwise, it will be a pointer to the
 
  /// slot which stores Ptr;
 
  const void *const * find_imp(const void * Ptr) const {
 
    if (isSmall()) {
 
      // Linear search for the item.
 
      for (const void *const *APtr = SmallArray,
 
                      *const *E = SmallArray + NumNonEmpty; APtr != E; ++APtr)
 
        if (*APtr == Ptr)
 
          return APtr;
 
      return EndPointer();
 
    }
 
 
 
    // Big set case.
 
    auto *Bucket = FindBucketFor(Ptr);
 
    if (*Bucket == Ptr)
 
      return Bucket;
 
    return EndPointer();
 
  }
 
 
 
private:
 
  bool isSmall() const { return CurArray == SmallArray; }
 
 
 
  std::pair<const void *const *, bool> insert_imp_big(const void *Ptr);
 
 
 
  const void * const *FindBucketFor(const void *Ptr) const;
 
  void shrink_and_clear();
 
 
 
  /// Grow - Allocate a larger backing store for the buckets and move it over.
 
  void Grow(unsigned NewSize);
 
 
 
protected:
 
  /// swap - Swaps the elements of two sets.
 
  /// Note: This method assumes that both sets have the same small size.
 
  void swap(SmallPtrSetImplBase &RHS);
 
 
 
  void CopyFrom(const SmallPtrSetImplBase &RHS);
 
  void MoveFrom(unsigned SmallSize, SmallPtrSetImplBase &&RHS);
 
 
 
private:
 
  /// Code shared by MoveFrom() and move constructor.
 
  void MoveHelper(unsigned SmallSize, SmallPtrSetImplBase &&RHS);
 
  /// Code shared by CopyFrom() and copy constructor.
 
  void CopyHelper(const SmallPtrSetImplBase &RHS);
 
};
 
 
 
/// SmallPtrSetIteratorImpl - This is the common base class shared between all
 
/// instances of SmallPtrSetIterator.
 
class SmallPtrSetIteratorImpl {
 
protected:
 
  const void *const *Bucket;
 
  const void *const *End;
 
 
 
public:
 
  explicit SmallPtrSetIteratorImpl(const void *const *BP, const void*const *E)
 
    : Bucket(BP), End(E) {
 
    if (shouldReverseIterate()) {
 
      RetreatIfNotValid();
 
      return;
 
    }
 
    AdvanceIfNotValid();
 
  }
 
 
 
  bool operator==(const SmallPtrSetIteratorImpl &RHS) const {
 
    return Bucket == RHS.Bucket;
 
  }
 
  bool operator!=(const SmallPtrSetIteratorImpl &RHS) const {
 
    return Bucket != RHS.Bucket;
 
  }
 
 
 
protected:
 
  /// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket
 
  /// that is.   This is guaranteed to stop because the end() bucket is marked
 
  /// valid.
 
  void AdvanceIfNotValid() {
 
    assert(Bucket <= End);
 
    while (Bucket != End &&
 
           (*Bucket == SmallPtrSetImplBase::getEmptyMarker() ||
 
            *Bucket == SmallPtrSetImplBase::getTombstoneMarker()))
 
      ++Bucket;
 
  }
 
  void RetreatIfNotValid() {
 
    assert(Bucket >= End);
 
    while (Bucket != End &&
 
           (Bucket[-1] == SmallPtrSetImplBase::getEmptyMarker() ||
 
            Bucket[-1] == SmallPtrSetImplBase::getTombstoneMarker())) {
 
      --Bucket;
 
    }
 
  }
 
};
 
 
 
/// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
 
template <typename PtrTy>
 
class SmallPtrSetIterator : public SmallPtrSetIteratorImpl,
 
                            DebugEpochBase::HandleBase {
 
  using PtrTraits = PointerLikeTypeTraits<PtrTy>;
 
 
 
public:
 
  using value_type = PtrTy;
 
  using reference = PtrTy;
 
  using pointer = PtrTy;
 
  using difference_type = std::ptrdiff_t;
 
  using iterator_category = std::forward_iterator_tag;
 
 
 
  explicit SmallPtrSetIterator(const void *const *BP, const void *const *E,
 
                               const DebugEpochBase &Epoch)
 
      : SmallPtrSetIteratorImpl(BP, E), DebugEpochBase::HandleBase(&Epoch) {}
 
 
 
  // Most methods are provided by the base class.
 
 
 
  const PtrTy operator*() const {
 
    assert(isHandleInSync() && "invalid iterator access!");
 
    if (shouldReverseIterate()) {
 
      assert(Bucket > End);
 
      return PtrTraits::getFromVoidPointer(const_cast<void *>(Bucket[-1]));
 
    }
 
    assert(Bucket < End);
 
    return PtrTraits::getFromVoidPointer(const_cast<void*>(*Bucket));
 
  }
 
 
 
  inline SmallPtrSetIterator& operator++() {          // Preincrement
 
    assert(isHandleInSync() && "invalid iterator access!");
 
    if (shouldReverseIterate()) {
 
      --Bucket;
 
      RetreatIfNotValid();
 
      return *this;
 
    }
 
    ++Bucket;
 
    AdvanceIfNotValid();
 
    return *this;
 
  }
 
 
 
  SmallPtrSetIterator operator++(int) {        // Postincrement
 
    SmallPtrSetIterator tmp = *this;
 
    ++*this;
 
    return tmp;
 
  }
 
};
 
 
 
/// RoundUpToPowerOfTwo - This is a helper template that rounds N up to the next
 
/// power of two (which means N itself if N is already a power of two).
 
template<unsigned N>
 
struct RoundUpToPowerOfTwo;
 
 
 
/// RoundUpToPowerOfTwoH - If N is not a power of two, increase it.  This is a
 
/// helper template used to implement RoundUpToPowerOfTwo.
 
template<unsigned N, bool isPowerTwo>
 
struct RoundUpToPowerOfTwoH {
 
  enum { Val = N };
 
};
 
template<unsigned N>
 
struct RoundUpToPowerOfTwoH<N, false> {
 
  enum {
 
    // We could just use NextVal = N+1, but this converges faster.  N|(N-1) sets
 
    // the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
 
    Val = RoundUpToPowerOfTwo<(N|(N-1)) + 1>::Val
 
  };
 
};
 
 
 
template<unsigned N>
 
struct RoundUpToPowerOfTwo {
 
  enum { Val = RoundUpToPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
 
};
 
 
 
/// A templated base class for \c SmallPtrSet which provides the
 
/// typesafe interface that is common across all small sizes.
 
///
 
/// This is particularly useful for passing around between interface boundaries
 
/// to avoid encoding a particular small size in the interface boundary.
 
template <typename PtrType>
 
class SmallPtrSetImpl : public SmallPtrSetImplBase {
 
  using ConstPtrType = typename add_const_past_pointer<PtrType>::type;
 
  using PtrTraits = PointerLikeTypeTraits<PtrType>;
 
  using ConstPtrTraits = PointerLikeTypeTraits<ConstPtrType>;
 
 
 
protected:
 
  // Forward constructors to the base.
 
  using SmallPtrSetImplBase::SmallPtrSetImplBase;
 
 
 
public:
 
  using iterator = SmallPtrSetIterator<PtrType>;
 
  using const_iterator = SmallPtrSetIterator<PtrType>;
 
  using key_type = ConstPtrType;
 
  using value_type = PtrType;
 
 
 
  SmallPtrSetImpl(const SmallPtrSetImpl &) = delete;
 
 
 
  /// Inserts Ptr if and only if there is no element in the container equal to
 
  /// Ptr. The bool component of the returned pair is true if and only if the
 
  /// insertion takes place, and the iterator component of the pair points to
 
  /// the element equal to Ptr.
 
  std::pair<iterator, bool> insert(PtrType Ptr) {
 
    auto p = insert_imp(PtrTraits::getAsVoidPointer(Ptr));
 
    return std::make_pair(makeIterator(p.first), p.second);
 
  }
 
 
 
  /// Insert the given pointer with an iterator hint that is ignored. This is
 
  /// identical to calling insert(Ptr), but allows SmallPtrSet to be used by
 
  /// std::insert_iterator and std::inserter().
 
  iterator insert(iterator, PtrType Ptr) {
 
    return insert(Ptr).first;
 
  }
 
 
 
  /// erase - If the set contains the specified pointer, remove it and return
 
  /// true, otherwise return false.
 
  bool erase(PtrType Ptr) {
 
    return erase_imp(PtrTraits::getAsVoidPointer(Ptr));
 
  }
 
  /// count - Return 1 if the specified pointer is in the set, 0 otherwise.
 
  size_type count(ConstPtrType Ptr) const {
 
    return find_imp(ConstPtrTraits::getAsVoidPointer(Ptr)) != EndPointer();
 
  }
 
  iterator find(ConstPtrType Ptr) const {
 
    return makeIterator(find_imp(ConstPtrTraits::getAsVoidPointer(Ptr)));
 
  }
 
  bool contains(ConstPtrType Ptr) const {
 
    return find_imp(ConstPtrTraits::getAsVoidPointer(Ptr)) != EndPointer();
 
  }
 
 
 
  template <typename IterT>
 
  void insert(IterT I, IterT E) {
 
    for (; I != E; ++I)
 
      insert(*I);
 
  }
 
 
 
  void insert(std::initializer_list<PtrType> IL) {
 
    insert(IL.begin(), IL.end());
 
  }
 
 
 
  iterator begin() const {
 
    if (shouldReverseIterate())
 
      return makeIterator(EndPointer() - 1);
 
    return makeIterator(CurArray);
 
  }
 
  iterator end() const { return makeIterator(EndPointer()); }
 
 
 
private:
 
  /// Create an iterator that dereferences to same place as the given pointer.
 
  iterator makeIterator(const void *const *P) const {
 
    if (shouldReverseIterate())
 
      return iterator(P == EndPointer() ? CurArray : P + 1, CurArray, *this);
 
    return iterator(P, EndPointer(), *this);
 
  }
 
};
 
 
 
/// Equality comparison for SmallPtrSet.
 
///
 
/// Iterates over elements of LHS confirming that each value from LHS is also in
 
/// RHS, and that no additional values are in RHS.
 
template <typename PtrType>
 
bool operator==(const SmallPtrSetImpl<PtrType> &LHS,
 
                const SmallPtrSetImpl<PtrType> &RHS) {
 
  if (LHS.size() != RHS.size())
 
    return false;
 
 
 
  for (const auto *KV : LHS)
 
    if (!RHS.count(KV))
 
      return false;
 
 
 
  return true;
 
}
 
 
 
/// Inequality comparison for SmallPtrSet.
 
///
 
/// Equivalent to !(LHS == RHS).
 
template <typename PtrType>
 
bool operator!=(const SmallPtrSetImpl<PtrType> &LHS,
 
                const SmallPtrSetImpl<PtrType> &RHS) {
 
  return !(LHS == RHS);
 
}
 
 
 
/// SmallPtrSet - This class implements a set which is optimized for holding
 
/// SmallSize or less elements.  This internally rounds up SmallSize to the next
 
/// power of two if it is not already a power of two.  See the comments above
 
/// SmallPtrSetImplBase for details of the algorithm.
 
template<class PtrType, unsigned SmallSize>
 
class SmallPtrSet : public SmallPtrSetImpl<PtrType> {
 
  // In small mode SmallPtrSet uses linear search for the elements, so it is
 
  // not a good idea to choose this value too high. You may consider using a
 
  // DenseSet<> instead if you expect many elements in the set.
 
  static_assert(SmallSize <= 32, "SmallSize should be small");
 
 
 
  using BaseT = SmallPtrSetImpl<PtrType>;
 
 
 
  // Make sure that SmallSize is a power of two, round up if not.
 
  enum { SmallSizePowTwo = RoundUpToPowerOfTwo<SmallSize>::Val };
 
  /// SmallStorage - Fixed size storage used in 'small mode'.
 
  const void *SmallStorage[SmallSizePowTwo];
 
 
 
public:
 
  SmallPtrSet() : BaseT(SmallStorage, SmallSizePowTwo) {}
 
  SmallPtrSet(const SmallPtrSet &that) : BaseT(SmallStorage, that) {}
 
  SmallPtrSet(SmallPtrSet &&that)
 
      : BaseT(SmallStorage, SmallSizePowTwo, std::move(that)) {}
 
 
 
  template<typename It>
 
  SmallPtrSet(It I, It E) : BaseT(SmallStorage, SmallSizePowTwo) {
 
    this->insert(I, E);
 
  }
 
 
 
  SmallPtrSet(std::initializer_list<PtrType> IL)
 
      : BaseT(SmallStorage, SmallSizePowTwo) {
 
    this->insert(IL.begin(), IL.end());
 
  }
 
 
 
  SmallPtrSet<PtrType, SmallSize> &
 
  operator=(const SmallPtrSet<PtrType, SmallSize> &RHS) {
 
    if (&RHS != this)
 
      this->CopyFrom(RHS);
 
    return *this;
 
  }
 
 
 
  SmallPtrSet<PtrType, SmallSize> &
 
  operator=(SmallPtrSet<PtrType, SmallSize> &&RHS) {
 
    if (&RHS != this)
 
      this->MoveFrom(SmallSizePowTwo, std::move(RHS));
 
    return *this;
 
  }
 
 
 
  SmallPtrSet<PtrType, SmallSize> &
 
  operator=(std::initializer_list<PtrType> IL) {
 
    this->clear();
 
    this->insert(IL.begin(), IL.end());
 
    return *this;
 
  }
 
 
 
  /// swap - Swaps the elements of two sets.
 
  void swap(SmallPtrSet<PtrType, SmallSize> &RHS) {
 
    SmallPtrSetImplBase::swap(RHS);
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
namespace std {
 
 
 
  /// Implement std::swap in terms of SmallPtrSet swap.
 
  template<class T, unsigned N>
 
  inline void swap(llvm::SmallPtrSet<T, N> &LHS, llvm::SmallPtrSet<T, N> &RHS) {
 
    LHS.swap(RHS);
 
  }
 
 
 
} // end namespace std
 
 
 
#endif // LLVM_ADT_SMALLPTRSET_H