//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file implements the SmallBitVector class.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SMALLBITVECTOR_H
 
#define LLVM_ADT_SMALLBITVECTOR_H
 
 
 
#include "llvm/ADT/BitVector.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Support/MathExtras.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <climits>
 
#include <cstddef>
 
#include <cstdint>
 
#include <limits>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
/// This is a 'bitvector' (really, a variable-sized bit array), optimized for
 
/// the case when the array is small. It contains one pointer-sized field, which
 
/// is directly used as a plain collection of bits when possible, or as a
 
/// pointer to a larger heap-allocated array when necessary. This allows normal
 
/// "small" cases to be fast without losing generality for large inputs.
 
class SmallBitVector {
 
  // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
 
  // unnecessary level of indirection. It would be more efficient to use a
 
  // pointer to memory containing size, allocation size, and the array of bits.
 
  uintptr_t X = 1;
 
 
 
  enum {
 
    // The number of bits in this class.
 
    NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
 
 
 
    // One bit is used to discriminate between small and large mode. The
 
    // remaining bits are used for the small-mode representation.
 
    SmallNumRawBits = NumBaseBits - 1,
 
 
 
    // A few more bits are used to store the size of the bit set in small mode.
 
    // Theoretically this is a ceil-log2. These bits are encoded in the most
 
    // significant bits of the raw bits.
 
    SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
 
                        NumBaseBits == 64 ? 6 :
 
                        SmallNumRawBits),
 
 
 
    // The remaining bits are used to store the actual set in small mode.
 
    SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
 
  };
 
 
 
  static_assert(NumBaseBits == 64 || NumBaseBits == 32,
 
                "Unsupported word size");
 
 
 
public:
 
  using size_type = uintptr_t;
 
 
 
  // Encapsulation of a single bit.
 
  class reference {
 
    SmallBitVector &TheVector;
 
    unsigned BitPos;
 
 
 
  public:
 
    reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
 
 
 
    reference(const reference&) = default;
 
 
 
    reference& operator=(reference t) {
 
      *this = bool(t);
 
      return *this;
 
    }
 
 
 
    reference& operator=(bool t) {
 
      if (t)
 
        TheVector.set(BitPos);
 
      else
 
        TheVector.reset(BitPos);
 
      return *this;
 
    }
 
 
 
    operator bool() const {
 
      return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
 
    }
 
  };
 
 
 
private:
 
  BitVector *getPointer() const {
 
    assert(!isSmall());
 
    return reinterpret_cast<BitVector *>(X);
 
  }
 
 
 
  void switchToSmall(uintptr_t NewSmallBits, size_type NewSize) {
 
    X = 1;
 
    setSmallSize(NewSize);
 
    setSmallBits(NewSmallBits);
 
  }
 
 
 
  void switchToLarge(BitVector *BV) {
 
    X = reinterpret_cast<uintptr_t>(BV);
 
    assert(!isSmall() && "Tried to use an unaligned pointer");
 
  }
 
 
 
  // Return all the bits used for the "small" representation; this includes
 
  // bits for the size as well as the element bits.
 
  uintptr_t getSmallRawBits() const {
 
    assert(isSmall());
 
    return X >> 1;
 
  }
 
 
 
  void setSmallRawBits(uintptr_t NewRawBits) {
 
    assert(isSmall());
 
    X = (NewRawBits << 1) | uintptr_t(1);
 
  }
 
 
 
  // Return the size.
 
  size_type getSmallSize() const {
 
    return getSmallRawBits() >> SmallNumDataBits;
 
  }
 
 
 
  void setSmallSize(size_type Size) {
 
    setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
 
  }
 
 
 
  // Return the element bits.
 
  uintptr_t getSmallBits() const {
 
    return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
 
  }
 
 
 
  void setSmallBits(uintptr_t NewBits) {
 
    setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
 
                    (getSmallSize() << SmallNumDataBits));
 
  }
 
 
 
public:
 
  /// Creates an empty bitvector.
 
  SmallBitVector() = default;
 
 
 
  /// Creates a bitvector of specified number of bits. All bits are initialized
 
  /// to the specified value.
 
  explicit SmallBitVector(unsigned s, bool t = false) {
 
    if (s <= SmallNumDataBits)
 
      switchToSmall(t ? ~uintptr_t(0) : 0, s);
 
    else
 
      switchToLarge(new BitVector(s, t));
 
  }
 
 
 
  /// SmallBitVector copy ctor.
 
  SmallBitVector(const SmallBitVector &RHS) {
 
    if (RHS.isSmall())
 
      X = RHS.X;
 
    else
 
      switchToLarge(new BitVector(*RHS.getPointer()));
 
  }
 
 
 
  SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
 
    RHS.X = 1;
 
  }
 
 
 
  ~SmallBitVector() {
 
    if (!isSmall())
 
      delete getPointer();
 
  }
 
 
 
  using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
 
  using set_iterator = const_set_bits_iterator;
 
 
 
  const_set_bits_iterator set_bits_begin() const {
 
    return const_set_bits_iterator(*this);
 
  }
 
 
 
  const_set_bits_iterator set_bits_end() const {
 
    return const_set_bits_iterator(*this, -1);
 
  }
 
 
 
  iterator_range<const_set_bits_iterator> set_bits() const {
 
    return make_range(set_bits_begin(), set_bits_end());
 
  }
 
 
 
  bool isSmall() const { return X & uintptr_t(1); }
 
 
 
  /// Tests whether there are no bits in this bitvector.
 
  bool empty() const {
 
    return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
 
  }
 
 
 
  /// Returns the number of bits in this bitvector.
 
  size_type size() const {
 
    return isSmall() ? getSmallSize() : getPointer()->size();
 
  }
 
 
 
  /// Returns the number of bits which are set.
 
  size_type count() const {
 
    if (isSmall()) {
 
      uintptr_t Bits = getSmallBits();
 
      return llvm::popcount(Bits);
 
    }
 
    return getPointer()->count();
 
  }
 
 
 
  /// Returns true if any bit is set.
 
  bool any() const {
 
    if (isSmall())
 
      return getSmallBits() != 0;
 
    return getPointer()->any();
 
  }
 
 
 
  /// Returns true if all bits are set.
 
  bool all() const {
 
    if (isSmall())
 
      return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
 
    return getPointer()->all();
 
  }
 
 
 
  /// Returns true if none of the bits are set.
 
  bool none() const {
 
    if (isSmall())
 
      return getSmallBits() == 0;
 
    return getPointer()->none();
 
  }
 
 
 
  /// Returns the index of the first set bit, -1 if none of the bits are set.
 
  int find_first() const {
 
    if (isSmall()) {
 
      uintptr_t Bits = getSmallBits();
 
      if (Bits == 0)
 
        return -1;
 
      return countTrailingZeros(Bits);
 
    }
 
    return getPointer()->find_first();
 
  }
 
 
 
  int find_last() const {
 
    if (isSmall()) {
 
      uintptr_t Bits = getSmallBits();
 
      if (Bits == 0)
 
        return -1;
 
      return NumBaseBits - countLeadingZeros(Bits) - 1;
 
    }
 
    return getPointer()->find_last();
 
  }
 
 
 
  /// Returns the index of the first unset bit, -1 if all of the bits are set.
 
  int find_first_unset() const {
 
    if (isSmall()) {
 
      if (count() == getSmallSize())
 
        return -1;
 
 
 
      uintptr_t Bits = getSmallBits();
 
      return countTrailingOnes(Bits);
 
    }
 
    return getPointer()->find_first_unset();
 
  }
 
 
 
  int find_last_unset() const {
 
    if (isSmall()) {
 
      if (count() == getSmallSize())
 
        return -1;
 
 
 
      uintptr_t Bits = getSmallBits();
 
      // Set unused bits.
 
      Bits |= ~uintptr_t(0) << getSmallSize();
 
      return NumBaseBits - countLeadingOnes(Bits) - 1;
 
    }
 
    return getPointer()->find_last_unset();
 
  }
 
 
 
  /// Returns the index of the next set bit following the "Prev" bit.
 
  /// Returns -1 if the next set bit is not found.
 
  int find_next(unsigned Prev) const {
 
    if (isSmall()) {
 
      uintptr_t Bits = getSmallBits();
 
      // Mask off previous bits.
 
      Bits &= ~uintptr_t(0) << (Prev + 1);
 
      if (Bits == 0 || Prev + 1 >= getSmallSize())
 
        return -1;
 
      return countTrailingZeros(Bits);
 
    }
 
    return getPointer()->find_next(Prev);
 
  }
 
 
 
  /// Returns the index of the next unset bit following the "Prev" bit.
 
  /// Returns -1 if the next unset bit is not found.
 
  int find_next_unset(unsigned Prev) const {
 
    if (isSmall()) {
 
      uintptr_t Bits = getSmallBits();
 
      // Mask in previous bits.
 
      Bits |= (uintptr_t(1) << (Prev + 1)) - 1;
 
      // Mask in unused bits.
 
      Bits |= ~uintptr_t(0) << getSmallSize();
 
 
 
      if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
 
        return -1;
 
      return countTrailingOnes(Bits);
 
    }
 
    return getPointer()->find_next_unset(Prev);
 
  }
 
 
 
  /// find_prev - Returns the index of the first set bit that precedes the
 
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
 
  int find_prev(unsigned PriorTo) const {
 
    if (isSmall()) {
 
      if (PriorTo == 0)
 
        return -1;
 
 
 
      --PriorTo;
 
      uintptr_t Bits = getSmallBits();
 
      Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
 
      if (Bits == 0)
 
        return -1;
 
 
 
      return NumBaseBits - countLeadingZeros(Bits) - 1;
 
    }
 
    return getPointer()->find_prev(PriorTo);
 
  }
 
 
 
  /// Clear all bits.
 
  void clear() {
 
    if (!isSmall())
 
      delete getPointer();
 
    switchToSmall(0, 0);
 
  }
 
 
 
  /// Grow or shrink the bitvector.
 
  void resize(unsigned N, bool t = false) {
 
    if (!isSmall()) {
 
      getPointer()->resize(N, t);
 
    } else if (SmallNumDataBits >= N) {
 
      uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
 
      setSmallSize(N);
 
      setSmallBits(NewBits | getSmallBits());
 
    } else {
 
      BitVector *BV = new BitVector(N, t);
 
      uintptr_t OldBits = getSmallBits();
 
      for (size_type I = 0, E = getSmallSize(); I != E; ++I)
 
        (*BV)[I] = (OldBits >> I) & 1;
 
      switchToLarge(BV);
 
    }
 
  }
 
 
 
  void reserve(unsigned N) {
 
    if (isSmall()) {
 
      if (N > SmallNumDataBits) {
 
        uintptr_t OldBits = getSmallRawBits();
 
        size_type SmallSize = getSmallSize();
 
        BitVector *BV = new BitVector(SmallSize);
 
        for (size_type I = 0; I < SmallSize; ++I)
 
          if ((OldBits >> I) & 1)
 
            BV->set(I);
 
        BV->reserve(N);
 
        switchToLarge(BV);
 
      }
 
    } else {
 
      getPointer()->reserve(N);
 
    }
 
  }
 
 
 
  // Set, reset, flip
 
  SmallBitVector &set() {
 
    if (isSmall())
 
      setSmallBits(~uintptr_t(0));
 
    else
 
      getPointer()->set();
 
    return *this;
 
  }
 
 
 
  SmallBitVector &set(unsigned Idx) {
 
    if (isSmall()) {
 
      assert(Idx <= static_cast<unsigned>(
 
                        std::numeric_limits<uintptr_t>::digits) &&
 
             "undefined behavior");
 
      setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
 
    }
 
    else
 
      getPointer()->set(Idx);
 
    return *this;
 
  }
 
 
 
  /// Efficiently set a range of bits in [I, E)
 
  SmallBitVector &set(unsigned I, unsigned E) {
 
    assert(I <= E && "Attempted to set backwards range!");
 
    assert(E <= size() && "Attempted to set out-of-bounds range!");
 
    if (I == E) return *this;
 
    if (isSmall()) {
 
      uintptr_t EMask = ((uintptr_t)1) << E;
 
      uintptr_t IMask = ((uintptr_t)1) << I;
 
      uintptr_t Mask = EMask - IMask;
 
      setSmallBits(getSmallBits() | Mask);
 
    } else
 
      getPointer()->set(I, E);
 
    return *this;
 
  }
 
 
 
  SmallBitVector &reset() {
 
    if (isSmall())
 
      setSmallBits(0);
 
    else
 
      getPointer()->reset();
 
    return *this;
 
  }
 
 
 
  SmallBitVector &reset(unsigned Idx) {
 
    if (isSmall())
 
      setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
 
    else
 
      getPointer()->reset(Idx);
 
    return *this;
 
  }
 
 
 
  /// Efficiently reset a range of bits in [I, E)
 
  SmallBitVector &reset(unsigned I, unsigned E) {
 
    assert(I <= E && "Attempted to reset backwards range!");
 
    assert(E <= size() && "Attempted to reset out-of-bounds range!");
 
    if (I == E) return *this;
 
    if (isSmall()) {
 
      uintptr_t EMask = ((uintptr_t)1) << E;
 
      uintptr_t IMask = ((uintptr_t)1) << I;
 
      uintptr_t Mask = EMask - IMask;
 
      setSmallBits(getSmallBits() & ~Mask);
 
    } else
 
      getPointer()->reset(I, E);
 
    return *this;
 
  }
 
 
 
  SmallBitVector &flip() {
 
    if (isSmall())
 
      setSmallBits(~getSmallBits());
 
    else
 
      getPointer()->flip();
 
    return *this;
 
  }
 
 
 
  SmallBitVector &flip(unsigned Idx) {
 
    if (isSmall())
 
      setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
 
    else
 
      getPointer()->flip(Idx);
 
    return *this;
 
  }
 
 
 
  // No argument flip.
 
  SmallBitVector operator~() const {
 
    return SmallBitVector(*this).flip();
 
  }
 
 
 
  // Indexing.
 
  reference operator[](unsigned Idx) {
 
    assert(Idx < size() && "Out-of-bounds Bit access.");
 
    return reference(*this, Idx);
 
  }
 
 
 
  bool operator[](unsigned Idx) const {
 
    assert(Idx < size() && "Out-of-bounds Bit access.");
 
    if (isSmall())
 
      return ((getSmallBits() >> Idx) & 1) != 0;
 
    return getPointer()->operator[](Idx);
 
  }
 
 
 
  /// Return the last element in the vector.
 
  bool back() const {
 
    assert(!empty() && "Getting last element of empty vector.");
 
    return (*this)[size() - 1];
 
  }
 
 
 
  bool test(unsigned Idx) const {
 
    return (*this)[Idx];
 
  }
 
 
 
  // Push single bit to end of vector.
 
  void push_back(bool Val) {
 
    resize(size() + 1, Val);
 
  }
 
 
 
  /// Pop one bit from the end of the vector.
 
  void pop_back() {
 
    assert(!empty() && "Empty vector has no element to pop.");
 
    resize(size() - 1);
 
  }
 
 
 
  /// Test if any common bits are set.
 
  bool anyCommon(const SmallBitVector &RHS) const {
 
    if (isSmall() && RHS.isSmall())
 
      return (getSmallBits() & RHS.getSmallBits()) != 0;
 
    if (!isSmall() && !RHS.isSmall())
 
      return getPointer()->anyCommon(*RHS.getPointer());
 
 
 
    for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
 
      if (test(i) && RHS.test(i))
 
        return true;
 
    return false;
 
  }
 
 
 
  // Comparison operators.
 
  bool operator==(const SmallBitVector &RHS) const {
 
    if (size() != RHS.size())
 
      return false;
 
    if (isSmall() && RHS.isSmall())
 
      return getSmallBits() == RHS.getSmallBits();
 
    else if (!isSmall() && !RHS.isSmall())
 
      return *getPointer() == *RHS.getPointer();
 
    else {
 
      for (size_type I = 0, E = size(); I != E; ++I) {
 
        if ((*this)[I] != RHS[I])
 
          return false;
 
      }
 
      return true;
 
    }
 
  }
 
 
 
  bool operator!=(const SmallBitVector &RHS) const {
 
    return !(*this == RHS);
 
  }
 
 
 
  // Intersection, union, disjoint union.
 
  // FIXME BitVector::operator&= does not resize the LHS but this does
 
  SmallBitVector &operator&=(const SmallBitVector &RHS) {
 
    resize(std::max(size(), RHS.size()));
 
    if (isSmall() && RHS.isSmall())
 
      setSmallBits(getSmallBits() & RHS.getSmallBits());
 
    else if (!isSmall() && !RHS.isSmall())
 
      getPointer()->operator&=(*RHS.getPointer());
 
    else {
 
      size_type I, E;
 
      for (I = 0, E = std::min(size(), RHS.size()); I != E; ++I)
 
        (*this)[I] = test(I) && RHS.test(I);
 
      for (E = size(); I != E; ++I)
 
        reset(I);
 
    }
 
    return *this;
 
  }
 
 
 
  /// Reset bits that are set in RHS. Same as *this &= ~RHS.
 
  SmallBitVector &reset(const SmallBitVector &RHS) {
 
    if (isSmall() && RHS.isSmall())
 
      setSmallBits(getSmallBits() & ~RHS.getSmallBits());
 
    else if (!isSmall() && !RHS.isSmall())
 
      getPointer()->reset(*RHS.getPointer());
 
    else
 
      for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
 
        if (RHS.test(i))
 
          reset(i);
 
 
 
    return *this;
 
  }
 
 
 
  /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
 
  bool test(const SmallBitVector &RHS) const {
 
    if (isSmall() && RHS.isSmall())
 
      return (getSmallBits() & ~RHS.getSmallBits()) != 0;
 
    if (!isSmall() && !RHS.isSmall())
 
      return getPointer()->test(*RHS.getPointer());
 
 
 
    unsigned i, e;
 
    for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
 
      if (test(i) && !RHS.test(i))
 
        return true;
 
 
 
    for (e = size(); i != e; ++i)
 
      if (test(i))
 
        return true;
 
 
 
    return false;
 
  }
 
 
 
  SmallBitVector &operator|=(const SmallBitVector &RHS) {
 
    resize(std::max(size(), RHS.size()));
 
    if (isSmall() && RHS.isSmall())
 
      setSmallBits(getSmallBits() | RHS.getSmallBits());
 
    else if (!isSmall() && !RHS.isSmall())
 
      getPointer()->operator|=(*RHS.getPointer());
 
    else {
 
      for (size_type I = 0, E = RHS.size(); I != E; ++I)
 
        (*this)[I] = test(I) || RHS.test(I);
 
    }
 
    return *this;
 
  }
 
 
 
  SmallBitVector &operator^=(const SmallBitVector &RHS) {
 
    resize(std::max(size(), RHS.size()));
 
    if (isSmall() && RHS.isSmall())
 
      setSmallBits(getSmallBits() ^ RHS.getSmallBits());
 
    else if (!isSmall() && !RHS.isSmall())
 
      getPointer()->operator^=(*RHS.getPointer());
 
    else {
 
      for (size_type I = 0, E = RHS.size(); I != E; ++I)
 
        (*this)[I] = test(I) != RHS.test(I);
 
    }
 
    return *this;
 
  }
 
 
 
  SmallBitVector &operator<<=(unsigned N) {
 
    if (isSmall())
 
      setSmallBits(getSmallBits() << N);
 
    else
 
      getPointer()->operator<<=(N);
 
    return *this;
 
  }
 
 
 
  SmallBitVector &operator>>=(unsigned N) {
 
    if (isSmall())
 
      setSmallBits(getSmallBits() >> N);
 
    else
 
      getPointer()->operator>>=(N);
 
    return *this;
 
  }
 
 
 
  // Assignment operator.
 
  const SmallBitVector &operator=(const SmallBitVector &RHS) {
 
    if (isSmall()) {
 
      if (RHS.isSmall())
 
        X = RHS.X;
 
      else
 
        switchToLarge(new BitVector(*RHS.getPointer()));
 
    } else {
 
      if (!RHS.isSmall())
 
        *getPointer() = *RHS.getPointer();
 
      else {
 
        delete getPointer();
 
        X = RHS.X;
 
      }
 
    }
 
    return *this;
 
  }
 
 
 
  const SmallBitVector &operator=(SmallBitVector &&RHS) {
 
    if (this != &RHS) {
 
      clear();
 
      swap(RHS);
 
    }
 
    return *this;
 
  }
 
 
 
  void swap(SmallBitVector &RHS) {
 
    std::swap(X, RHS.X);
 
  }
 
 
 
  /// Add '1' bits from Mask to this vector. Don't resize.
 
  /// This computes "*this |= Mask".
 
  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    if (isSmall())
 
      applyMask<true, false>(Mask, MaskWords);
 
    else
 
      getPointer()->setBitsInMask(Mask, MaskWords);
 
  }
 
 
 
  /// Clear any bits in this vector that are set in Mask. Don't resize.
 
  /// This computes "*this &= ~Mask".
 
  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    if (isSmall())
 
      applyMask<false, false>(Mask, MaskWords);
 
    else
 
      getPointer()->clearBitsInMask(Mask, MaskWords);
 
  }
 
 
 
  /// Add a bit to this vector for every '0' bit in Mask. Don't resize.
 
  /// This computes "*this |= ~Mask".
 
  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    if (isSmall())
 
      applyMask<true, true>(Mask, MaskWords);
 
    else
 
      getPointer()->setBitsNotInMask(Mask, MaskWords);
 
  }
 
 
 
  /// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
 
  /// This computes "*this &= Mask".
 
  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    if (isSmall())
 
      applyMask<false, true>(Mask, MaskWords);
 
    else
 
      getPointer()->clearBitsNotInMask(Mask, MaskWords);
 
  }
 
 
 
  void invalid() {
 
    assert(empty());
 
    X = (uintptr_t)-1;
 
  }
 
  bool isInvalid() const { return X == (uintptr_t)-1; }
 
 
 
  ArrayRef<uintptr_t> getData(uintptr_t &Store) const {
 
    if (!isSmall())
 
      return getPointer()->getData();
 
    Store = getSmallBits();
 
    return Store;
 
  }
 
 
 
private:
 
  template <bool AddBits, bool InvertMask>
 
  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
 
    assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
 
    uintptr_t M = Mask[0];
 
    if (NumBaseBits == 64)
 
      M |= uint64_t(Mask[1]) << 32;
 
    if (InvertMask)
 
      M = ~M;
 
    if (AddBits)
 
      setSmallBits(getSmallBits() | M);
 
    else
 
      setSmallBits(getSmallBits() & ~M);
 
  }
 
};
 
 
 
inline SmallBitVector
 
operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
 
  SmallBitVector Result(LHS);
 
  Result &= RHS;
 
  return Result;
 
}
 
 
 
inline SmallBitVector
 
operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
 
  SmallBitVector Result(LHS);
 
  Result |= RHS;
 
  return Result;
 
}
 
 
 
inline SmallBitVector
 
operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
 
  SmallBitVector Result(LHS);
 
  Result ^= RHS;
 
  return Result;
 
}
 
 
 
template <> struct DenseMapInfo<SmallBitVector> {
 
  static inline SmallBitVector getEmptyKey() { return SmallBitVector(); }
 
  static inline SmallBitVector getTombstoneKey() {
 
    SmallBitVector V;
 
    V.invalid();
 
    return V;
 
  }
 
  static unsigned getHashValue(const SmallBitVector &V) {
 
    uintptr_t Store;
 
    return DenseMapInfo<
 
        std::pair<SmallBitVector::size_type, ArrayRef<uintptr_t>>>::
 
        getHashValue(std::make_pair(V.size(), V.getData(Store)));
 
  }
 
  static bool isEqual(const SmallBitVector &LHS, const SmallBitVector &RHS) {
 
    if (LHS.isInvalid() || RHS.isInvalid())
 
      return LHS.isInvalid() == RHS.isInvalid();
 
    return LHS == RHS;
 
  }
 
};
 
} // end namespace llvm
 
 
 
namespace std {
 
 
 
/// Implement std::swap in terms of BitVector swap.
 
inline void
 
swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
 
  LHS.swap(RHS);
 
}
 
 
 
} // end namespace std
 
 
 
#endif // LLVM_ADT_SMALLBITVECTOR_H