//===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file implements a set that has insertion order iteration
 
/// characteristics. This is useful for keeping a set of things that need to be
 
/// visited later but in a deterministic order (insertion order). The interface
 
/// is purposefully minimal.
 
///
 
/// This file defines SetVector and SmallSetVector, which performs no
 
/// allocations if the SetVector has less than a certain number of elements.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SETVECTOR_H
 
#define LLVM_ADT_SETVECTOR_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/Support/Compiler.h"
 
#include <cassert>
 
#include <iterator>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
/// A vector that has set insertion semantics.
 
///
 
/// This adapter class provides a way to keep a set of things that also has the
 
/// property of a deterministic iteration order. The order of iteration is the
 
/// order of insertion.
 
template <typename T, typename Vector = std::vector<T>,
 
          typename Set = DenseSet<T>>
 
class SetVector {
 
public:
 
  using value_type = T;
 
  using key_type = T;
 
  using reference = T&;
 
  using const_reference = const T&;
 
  using set_type = Set;
 
  using vector_type = Vector;
 
  using iterator = typename vector_type::const_iterator;
 
  using const_iterator = typename vector_type::const_iterator;
 
  using reverse_iterator = typename vector_type::const_reverse_iterator;
 
  using const_reverse_iterator = typename vector_type::const_reverse_iterator;
 
  using size_type = typename vector_type::size_type;
 
 
 
  /// Construct an empty SetVector
 
  SetVector() = default;
 
 
 
  /// Initialize a SetVector with a range of elements
 
  template<typename It>
 
  SetVector(It Start, It End) {
 
    insert(Start, End);
 
  }
 
 
 
  ArrayRef<T> getArrayRef() const { return vector_; }
 
 
 
  /// Clear the SetVector and return the underlying vector.
 
  Vector takeVector() {
 
    set_.clear();
 
    return std::move(vector_);
 
  }
 
 
 
  /// Determine if the SetVector is empty or not.
 
  bool empty() const {
 
    return vector_.empty();
 
  }
 
 
 
  /// Determine the number of elements in the SetVector.
 
  size_type size() const {
 
    return vector_.size();
 
  }
 
 
 
  /// Get an iterator to the beginning of the SetVector.
 
  iterator begin() {
 
    return vector_.begin();
 
  }
 
 
 
  /// Get a const_iterator to the beginning of the SetVector.
 
  const_iterator begin() const {
 
    return vector_.begin();
 
  }
 
 
 
  /// Get an iterator to the end of the SetVector.
 
  iterator end() {
 
    return vector_.end();
 
  }
 
 
 
  /// Get a const_iterator to the end of the SetVector.
 
  const_iterator end() const {
 
    return vector_.end();
 
  }
 
 
 
  /// Get an reverse_iterator to the end of the SetVector.
 
  reverse_iterator rbegin() {
 
    return vector_.rbegin();
 
  }
 
 
 
  /// Get a const_reverse_iterator to the end of the SetVector.
 
  const_reverse_iterator rbegin() const {
 
    return vector_.rbegin();
 
  }
 
 
 
  /// Get a reverse_iterator to the beginning of the SetVector.
 
  reverse_iterator rend() {
 
    return vector_.rend();
 
  }
 
 
 
  /// Get a const_reverse_iterator to the beginning of the SetVector.
 
  const_reverse_iterator rend() const {
 
    return vector_.rend();
 
  }
 
 
 
  /// Return the first element of the SetVector.
 
  const T &front() const {
 
    assert(!empty() && "Cannot call front() on empty SetVector!");
 
    return vector_.front();
 
  }
 
 
 
  /// Return the last element of the SetVector.
 
  const T &back() const {
 
    assert(!empty() && "Cannot call back() on empty SetVector!");
 
    return vector_.back();
 
  }
 
 
 
  /// Index into the SetVector.
 
  const_reference operator[](size_type n) const {
 
    assert(n < vector_.size() && "SetVector access out of range!");
 
    return vector_[n];
 
  }
 
 
 
  /// Insert a new element into the SetVector.
 
  /// \returns true if the element was inserted into the SetVector.
 
  bool insert(const value_type &X) {
 
    bool result = set_.insert(X).second;
 
    if (result)
 
      vector_.push_back(X);
 
    return result;
 
  }
 
 
 
  /// Insert a range of elements into the SetVector.
 
  template<typename It>
 
  void insert(It Start, It End) {
 
    for (; Start != End; ++Start)
 
      if (set_.insert(*Start).second)
 
        vector_.push_back(*Start);
 
  }
 
 
 
  /// Remove an item from the set vector.
 
  bool remove(const value_type& X) {
 
    if (set_.erase(X)) {
 
      typename vector_type::iterator I = find(vector_, X);
 
      assert(I != vector_.end() && "Corrupted SetVector instances!");
 
      vector_.erase(I);
 
      return true;
 
    }
 
    return false;
 
  }
 
 
 
  /// Erase a single element from the set vector.
 
  /// \returns an iterator pointing to the next element that followed the
 
  /// element erased. This is the end of the SetVector if the last element is
 
  /// erased.
 
  iterator erase(const_iterator I) {
 
    const key_type &V = *I;
 
    assert(set_.count(V) && "Corrupted SetVector instances!");
 
    set_.erase(V);
 
    return vector_.erase(I);
 
  }
 
 
 
  /// Remove items from the set vector based on a predicate function.
 
  ///
 
  /// This is intended to be equivalent to the following code, if we could
 
  /// write it:
 
  ///
 
  /// \code
 
  ///   V.erase(remove_if(V, P), V.end());
 
  /// \endcode
 
  ///
 
  /// However, SetVector doesn't expose non-const iterators, making any
 
  /// algorithm like remove_if impossible to use.
 
  ///
 
  /// \returns true if any element is removed.
 
  template <typename UnaryPredicate>
 
  bool remove_if(UnaryPredicate P) {
 
    typename vector_type::iterator I =
 
        llvm::remove_if(vector_, TestAndEraseFromSet<UnaryPredicate>(P, set_));
 
    if (I == vector_.end())
 
      return false;
 
    vector_.erase(I, vector_.end());
 
    return true;
 
  }
 
 
 
  /// Check if the SetVector contains the given key.
 
  bool contains(const key_type &key) const {
 
    return set_.find(key) != set_.end();
 
  }
 
 
 
  /// Count the number of elements of a given key in the SetVector.
 
  /// \returns 0 if the element is not in the SetVector, 1 if it is.
 
  size_type count(const key_type &key) const {
 
    return set_.count(key);
 
  }
 
 
 
  /// Completely clear the SetVector
 
  void clear() {
 
    set_.clear();
 
    vector_.clear();
 
  }
 
 
 
  /// Remove the last element of the SetVector.
 
  void pop_back() {
 
    assert(!empty() && "Cannot remove an element from an empty SetVector!");
 
    set_.erase(back());
 
    vector_.pop_back();
 
  }
 
 
 
  [[nodiscard]] T pop_back_val() {
 
    T Ret = back();
 
    pop_back();
 
    return Ret;
 
  }
 
 
 
  bool operator==(const SetVector &that) const {
 
    return vector_ == that.vector_;
 
  }
 
 
 
  bool operator!=(const SetVector &that) const {
 
    return vector_ != that.vector_;
 
  }
 
 
 
  /// Compute This := This u S, return whether 'This' changed.
 
  /// TODO: We should be able to use set_union from SetOperations.h, but
 
  ///       SetVector interface is inconsistent with DenseSet.
 
  template <class STy>
 
  bool set_union(const STy &S) {
 
    bool Changed = false;
 
 
 
    for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE;
 
         ++SI)
 
      if (insert(*SI))
 
        Changed = true;
 
 
 
    return Changed;
 
  }
 
 
 
  /// Compute This := This - B
 
  /// TODO: We should be able to use set_subtract from SetOperations.h, but
 
  ///       SetVector interface is inconsistent with DenseSet.
 
  template <class STy>
 
  void set_subtract(const STy &S) {
 
    for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE;
 
         ++SI)
 
      remove(*SI);
 
  }
 
 
 
  void swap(SetVector<T, Vector, Set> &RHS) {
 
    set_.swap(RHS.set_);
 
    vector_.swap(RHS.vector_);
 
  }
 
 
 
private:
 
  /// A wrapper predicate designed for use with std::remove_if.
 
  ///
 
  /// This predicate wraps a predicate suitable for use with std::remove_if to
 
  /// call set_.erase(x) on each element which is slated for removal.
 
  template <typename UnaryPredicate>
 
  class TestAndEraseFromSet {
 
    UnaryPredicate P;
 
    set_type &set_;
 
 
 
  public:
 
    TestAndEraseFromSet(UnaryPredicate P, set_type &set_)
 
        : P(std::move(P)), set_(set_) {}
 
 
 
    template <typename ArgumentT>
 
    bool operator()(const ArgumentT &Arg) {
 
      if (P(Arg)) {
 
        set_.erase(Arg);
 
        return true;
 
      }
 
      return false;
 
    }
 
  };
 
 
 
  set_type set_;         ///< The set.
 
  vector_type vector_;   ///< The vector.
 
};
 
 
 
/// A SetVector that performs no allocations if smaller than
 
/// a certain size.
 
template <typename T, unsigned N>
 
class SmallSetVector
 
    : public SetVector<T, SmallVector<T, N>, SmallDenseSet<T, N>> {
 
public:
 
  SmallSetVector() = default;
 
 
 
  /// Initialize a SmallSetVector with a range of elements
 
  template<typename It>
 
  SmallSetVector(It Start, It End) {
 
    this->insert(Start, End);
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
namespace std {
 
 
 
/// Implement std::swap in terms of SetVector swap.
 
template<typename T, typename V, typename S>
 
inline void
 
swap(llvm::SetVector<T, V, S> &LHS, llvm::SetVector<T, V, S> &RHS) {
 
  LHS.swap(RHS);
 
}
 
 
 
/// Implement std::swap in terms of SmallSetVector swap.
 
template<typename T, unsigned N>
 
inline void
 
swap(llvm::SmallSetVector<T, N> &LHS, llvm::SmallSetVector<T, N> &RHS) {
 
  LHS.swap(RHS);
 
}
 
 
 
} // end namespace std
 
 
 
#endif // LLVM_ADT_SETVECTOR_H