- //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// \file 
- /// 
- /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly 
- /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS 
- /// algorithm. 
- /// 
- /// The SCC iterator has the important property that if a node in SCC S1 has an 
- /// edge to a node in SCC S2, then it visits S1 *after* S2. 
- /// 
- /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE: 
- /// This requires some simple wrappers and is not supported yet.) 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ADT_SCCITERATOR_H 
- #define LLVM_ADT_SCCITERATOR_H 
-   
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/GraphTraits.h" 
- #include "llvm/ADT/iterator.h" 
- #include <cassert> 
- #include <cstddef> 
- #include <iterator> 
- #include <queue> 
- #include <set> 
- #include <unordered_map> 
- #include <unordered_set> 
- #include <vector> 
-   
- namespace llvm { 
-   
- /// Enumerate the SCCs of a directed graph in reverse topological order 
- /// of the SCC DAG. 
- /// 
- /// This is implemented using Tarjan's DFS algorithm using an internal stack to 
- /// build up a vector of nodes in a particular SCC. Note that it is a forward 
- /// iterator and thus you cannot backtrack or re-visit nodes. 
- template <class GraphT, class GT = GraphTraits<GraphT>> 
- class scc_iterator : public iterator_facade_base< 
-                          scc_iterator<GraphT, GT>, std::forward_iterator_tag, 
-                          const std::vector<typename GT::NodeRef>, ptrdiff_t> { 
-   using NodeRef = typename GT::NodeRef; 
-   using ChildItTy = typename GT::ChildIteratorType; 
-   using SccTy = std::vector<NodeRef>; 
-   using reference = typename scc_iterator::reference; 
-   
-   /// Element of VisitStack during DFS. 
-   struct StackElement { 
-     NodeRef Node;         ///< The current node pointer. 
-     ChildItTy NextChild;  ///< The next child, modified inplace during DFS. 
-     unsigned MinVisited;  ///< Minimum uplink value of all children of Node. 
-   
-     StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min) 
-         : Node(Node), NextChild(Child), MinVisited(Min) {} 
-   
-     bool operator==(const StackElement &Other) const { 
-       return Node == Other.Node && 
-              NextChild == Other.NextChild && 
-              MinVisited == Other.MinVisited; 
-     } 
-   }; 
-   
-   /// The visit counters used to detect when a complete SCC is on the stack. 
-   /// visitNum is the global counter. 
-   /// 
-   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags. 
-   unsigned visitNum; 
-   DenseMap<NodeRef, unsigned> nodeVisitNumbers; 
-   
-   /// Stack holding nodes of the SCC. 
-   std::vector<NodeRef> SCCNodeStack; 
-   
-   /// The current SCC, retrieved using operator*(). 
-   SccTy CurrentSCC; 
-   
-   /// DFS stack, Used to maintain the ordering.  The top contains the current 
-   /// node, the next child to visit, and the minimum uplink value of all child 
-   std::vector<StackElement> VisitStack; 
-   
-   /// A single "visit" within the non-recursive DFS traversal. 
-   void DFSVisitOne(NodeRef N); 
-   
-   /// The stack-based DFS traversal; defined below. 
-   void DFSVisitChildren(); 
-   
-   /// Compute the next SCC using the DFS traversal. 
-   void GetNextSCC(); 
-   
-   scc_iterator(NodeRef entryN) : visitNum(0) { 
-     DFSVisitOne(entryN); 
-     GetNextSCC(); 
-   } 
-   
-   /// End is when the DFS stack is empty. 
-   scc_iterator() = default; 
-   
- public: 
-   static scc_iterator begin(const GraphT &G) { 
-     return scc_iterator(GT::getEntryNode(G)); 
-   } 
-   static scc_iterator end(const GraphT &) { return scc_iterator(); } 
-   
-   /// Direct loop termination test which is more efficient than 
-   /// comparison with \c end(). 
-   bool isAtEnd() const { 
-     assert(!CurrentSCC.empty() || VisitStack.empty()); 
-     return CurrentSCC.empty(); 
-   } 
-   
-   bool operator==(const scc_iterator &x) const { 
-     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; 
-   } 
-   
-   scc_iterator &operator++() { 
-     GetNextSCC(); 
-     return *this; 
-   } 
-   
-   reference operator*() const { 
-     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); 
-     return CurrentSCC; 
-   } 
-   
-   /// Test if the current SCC has a cycle. 
-   /// 
-   /// If the SCC has more than one node, this is trivially true.  If not, it may 
-   /// still contain a cycle if the node has an edge back to itself. 
-   bool hasCycle() const; 
-   
-   /// This informs the \c scc_iterator that the specified \c Old node 
-   /// has been deleted, and \c New is to be used in its place. 
-   void ReplaceNode(NodeRef Old, NodeRef New) { 
-     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); 
-     // Do the assignment in two steps, in case 'New' is not yet in the map, and 
-     // inserting it causes the map to grow. 
-     auto tempVal = nodeVisitNumbers[Old]; 
-     nodeVisitNumbers[New] = tempVal; 
-     nodeVisitNumbers.erase(Old); 
-   } 
- }; 
-   
- template <class GraphT, class GT> 
- void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) { 
-   ++visitNum; 
-   nodeVisitNumbers[N] = visitNum; 
-   SCCNodeStack.push_back(N); 
-   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum)); 
- #if 0 // Enable if needed when debugging. 
-   dbgs() << "TarjanSCC: Node " << N << 
-         " : visitNum = " << visitNum << "\n"; 
- #endif 
- } 
-   
- template <class GraphT, class GT> 
- void scc_iterator<GraphT, GT>::DFSVisitChildren() { 
-   assert(!VisitStack.empty()); 
-   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) { 
-     // TOS has at least one more child so continue DFS 
-     NodeRef childN = *VisitStack.back().NextChild++; 
-     typename DenseMap<NodeRef, unsigned>::iterator Visited = 
-         nodeVisitNumbers.find(childN); 
-     if (Visited == nodeVisitNumbers.end()) { 
-       // this node has never been seen. 
-       DFSVisitOne(childN); 
-       continue; 
-     } 
-   
-     unsigned childNum = Visited->second; 
-     if (VisitStack.back().MinVisited > childNum) 
-       VisitStack.back().MinVisited = childNum; 
-   } 
- } 
-   
- template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() { 
-   CurrentSCC.clear(); // Prepare to compute the next SCC 
-   while (!VisitStack.empty()) { 
-     DFSVisitChildren(); 
-   
-     // Pop the leaf on top of the VisitStack. 
-     NodeRef visitingN = VisitStack.back().Node; 
-     unsigned minVisitNum = VisitStack.back().MinVisited; 
-     assert(VisitStack.back().NextChild == GT::child_end(visitingN)); 
-     VisitStack.pop_back(); 
-   
-     // Propagate MinVisitNum to parent so we can detect the SCC starting node. 
-     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum) 
-       VisitStack.back().MinVisited = minVisitNum; 
-   
- #if 0 // Enable if needed when debugging. 
-     dbgs() << "TarjanSCC: Popped node " << visitingN << 
-           " : minVisitNum = " << minVisitNum << "; Node visit num = " << 
-           nodeVisitNumbers[visitingN] << "\n"; 
- #endif 
-   
-     if (minVisitNum != nodeVisitNumbers[visitingN]) 
-       continue; 
-   
-     // A full SCC is on the SCCNodeStack!  It includes all nodes below 
-     // visitingN on the stack.  Copy those nodes to CurrentSCC, 
-     // reset their minVisit values, and return (this suspends 
-     // the DFS traversal till the next ++). 
-     do { 
-       CurrentSCC.push_back(SCCNodeStack.back()); 
-       SCCNodeStack.pop_back(); 
-       nodeVisitNumbers[CurrentSCC.back()] = ~0U; 
-     } while (CurrentSCC.back() != visitingN); 
-     return; 
-   } 
- } 
-   
- template <class GraphT, class GT> 
- bool scc_iterator<GraphT, GT>::hasCycle() const { 
-     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); 
-     if (CurrentSCC.size() > 1) 
-       return true; 
-     NodeRef N = CurrentSCC.front(); 
-     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE; 
-          ++CI) 
-       if (*CI == N) 
-         return true; 
-     return false; 
-   } 
-   
- /// Construct the begin iterator for a deduced graph type T. 
- template <class T> scc_iterator<T> scc_begin(const T &G) { 
-   return scc_iterator<T>::begin(G); 
- } 
-   
- /// Construct the end iterator for a deduced graph type T. 
- template <class T> scc_iterator<T> scc_end(const T &G) { 
-   return scc_iterator<T>::end(G); 
- } 
-   
- /// Sort the nodes of a directed SCC in the decreasing order of the edge 
- /// weights. The instantiating GraphT type should have weighted edge type 
- /// declared in its graph traits in order to use this iterator. 
- /// 
- /// This is implemented using Kruskal's minimal spanning tree algorithm followed 
- /// by a BFS walk. First a maximum spanning tree (forest) is built based on all 
- /// edges within the SCC collection. Then a BFS walk is initiated on tree nodes 
- /// that do not have a predecessor. Finally, the BFS order computed is the 
- /// traversal order of the nodes of the SCC. Such order ensures that 
- /// high-weighted edges are visited first during the tranversal. 
- template <class GraphT, class GT = GraphTraits<GraphT>> 
- class scc_member_iterator { 
-   using NodeType = typename GT::NodeType; 
-   using EdgeType = typename GT::EdgeType; 
-   using NodesType = std::vector<NodeType *>; 
-   
-   // Auxilary node information used during the MST calculation. 
-   struct NodeInfo { 
-     NodeInfo *Group = this; 
-     uint32_t Rank = 0; 
-     bool Visited = true; 
-   }; 
-   
-   // Find the root group of the node and compress the path from node to the 
-   // root. 
-   NodeInfo *find(NodeInfo *Node) { 
-     if (Node->Group != Node) 
-       Node->Group = find(Node->Group); 
-     return Node->Group; 
-   } 
-   
-   // Union the source and target node into the same group and return true. 
-   // Returns false if they are already in the same group. 
-   bool unionGroups(const EdgeType *Edge) { 
-     NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]); 
-     NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]); 
-   
-     // If the edge forms a cycle, do not add it to MST 
-     if (G1 == G2) 
-       return false; 
-   
-     // Make the smaller rank tree a direct child or the root of high rank tree. 
-     if (G1->Rank < G1->Rank) 
-       G1->Group = G2; 
-     else { 
-       G2->Group = G1; 
-       // If the ranks are the same, increment root of one tree by one. 
-       if (G1->Rank == G2->Rank) 
-         G2->Rank++; 
-     } 
-     return true; 
-   } 
-   
-   std::unordered_map<NodeType *, NodeInfo> NodeInfoMap; 
-   NodesType Nodes; 
-   
- public: 
-   scc_member_iterator(const NodesType &InputNodes); 
-   
-   NodesType &operator*() { return Nodes; } 
- }; 
-   
- template <class GraphT, class GT> 
- scc_member_iterator<GraphT, GT>::scc_member_iterator( 
-     const NodesType &InputNodes) { 
-   if (InputNodes.size() <= 1) { 
-     Nodes = InputNodes; 
-     return; 
-   } 
-   
-   // Initialize auxilary node information. 
-   NodeInfoMap.clear(); 
-   for (auto *Node : InputNodes) { 
-     // This is specifically used to construct a `NodeInfo` object in place. An 
-     // insert operation will involve a copy construction which invalidate the 
-     // initial value of the `Group` field which should be `this`. 
-     (void)NodeInfoMap[Node].Group; 
-   } 
-   
-   // Sort edges by weights. 
-   struct EdgeComparer { 
-     bool operator()(const EdgeType *L, const EdgeType *R) const { 
-       return L->Weight > R->Weight; 
-     } 
-   }; 
-   
-   std::multiset<const EdgeType *, EdgeComparer> SortedEdges; 
-   for (auto *Node : InputNodes) { 
-     for (auto &Edge : Node->Edges) { 
-       if (NodeInfoMap.count(Edge.Target)) 
-         SortedEdges.insert(&Edge); 
-     } 
-   } 
-   
-   // Traverse all the edges and compute the Maximum Weight Spanning Tree 
-   // using Kruskal's algorithm. 
-   std::unordered_set<const EdgeType *> MSTEdges; 
-   for (auto *Edge : SortedEdges) { 
-     if (unionGroups(Edge)) 
-       MSTEdges.insert(Edge); 
-   } 
-   
-   // Do BFS on MST, starting from nodes that have no incoming edge. These nodes 
-   // are "roots" of the MST forest. This ensures that nodes are visited before 
-   // their decsendents are, thus ensures hot edges are processed before cold 
-   // edges, based on how MST is computed. 
-   for (const auto *Edge : MSTEdges) 
-     NodeInfoMap[Edge->Target].Visited = false; 
-   
-   std::queue<NodeType *> Queue; 
-   // Initialze the queue with MST roots. Note that walking through SortedEdges 
-   // instead of NodeInfoMap ensures an ordered deterministic push. 
-   for (auto *Edge : SortedEdges) { 
-     if (NodeInfoMap[Edge->Source].Visited) { 
-       Queue.push(Edge->Source); 
-       NodeInfoMap[Edge->Source].Visited = false; 
-     } 
-   } 
-   
-   while (!Queue.empty()) { 
-     auto *Node = Queue.front(); 
-     Queue.pop(); 
-     Nodes.push_back(Node); 
-     for (auto &Edge : Node->Edges) { 
-       if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) { 
-         NodeInfoMap[Edge.Target].Visited = true; 
-         Queue.push(Edge.Target); 
-       } 
-     } 
-   } 
-   
-   assert(InputNodes.size() == Nodes.size() && "missing nodes in MST"); 
-   std::reverse(Nodes.begin(), Nodes.end()); 
- } 
- } // end namespace llvm 
-   
- #endif // LLVM_ADT_SCCITERATOR_H 
-