Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. /// \file
  9. ///
  10. /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
  11. /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
  12. /// algorithm.
  13. ///
  14. /// The SCC iterator has the important property that if a node in SCC S1 has an
  15. /// edge to a node in SCC S2, then it visits S1 *after* S2.
  16. ///
  17. /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
  18. /// This requires some simple wrappers and is not supported yet.)
  19. ///
  20. //===----------------------------------------------------------------------===//
  21.  
  22. #ifndef LLVM_ADT_SCCITERATOR_H
  23. #define LLVM_ADT_SCCITERATOR_H
  24.  
  25. #include "llvm/ADT/DenseMap.h"
  26. #include "llvm/ADT/GraphTraits.h"
  27. #include "llvm/ADT/iterator.h"
  28. #include <cassert>
  29. #include <cstddef>
  30. #include <iterator>
  31. #include <queue>
  32. #include <set>
  33. #include <unordered_map>
  34. #include <unordered_set>
  35. #include <vector>
  36.  
  37. namespace llvm {
  38.  
  39. /// Enumerate the SCCs of a directed graph in reverse topological order
  40. /// of the SCC DAG.
  41. ///
  42. /// This is implemented using Tarjan's DFS algorithm using an internal stack to
  43. /// build up a vector of nodes in a particular SCC. Note that it is a forward
  44. /// iterator and thus you cannot backtrack or re-visit nodes.
  45. template <class GraphT, class GT = GraphTraits<GraphT>>
  46. class scc_iterator : public iterator_facade_base<
  47.                          scc_iterator<GraphT, GT>, std::forward_iterator_tag,
  48.                          const std::vector<typename GT::NodeRef>, ptrdiff_t> {
  49.   using NodeRef = typename GT::NodeRef;
  50.   using ChildItTy = typename GT::ChildIteratorType;
  51.   using SccTy = std::vector<NodeRef>;
  52.   using reference = typename scc_iterator::reference;
  53.  
  54.   /// Element of VisitStack during DFS.
  55.   struct StackElement {
  56.     NodeRef Node;         ///< The current node pointer.
  57.     ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
  58.     unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
  59.  
  60.     StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
  61.         : Node(Node), NextChild(Child), MinVisited(Min) {}
  62.  
  63.     bool operator==(const StackElement &Other) const {
  64.       return Node == Other.Node &&
  65.              NextChild == Other.NextChild &&
  66.              MinVisited == Other.MinVisited;
  67.     }
  68.   };
  69.  
  70.   /// The visit counters used to detect when a complete SCC is on the stack.
  71.   /// visitNum is the global counter.
  72.   ///
  73.   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
  74.   unsigned visitNum;
  75.   DenseMap<NodeRef, unsigned> nodeVisitNumbers;
  76.  
  77.   /// Stack holding nodes of the SCC.
  78.   std::vector<NodeRef> SCCNodeStack;
  79.  
  80.   /// The current SCC, retrieved using operator*().
  81.   SccTy CurrentSCC;
  82.  
  83.   /// DFS stack, Used to maintain the ordering.  The top contains the current
  84.   /// node, the next child to visit, and the minimum uplink value of all child
  85.   std::vector<StackElement> VisitStack;
  86.  
  87.   /// A single "visit" within the non-recursive DFS traversal.
  88.   void DFSVisitOne(NodeRef N);
  89.  
  90.   /// The stack-based DFS traversal; defined below.
  91.   void DFSVisitChildren();
  92.  
  93.   /// Compute the next SCC using the DFS traversal.
  94.   void GetNextSCC();
  95.  
  96.   scc_iterator(NodeRef entryN) : visitNum(0) {
  97.     DFSVisitOne(entryN);
  98.     GetNextSCC();
  99.   }
  100.  
  101.   /// End is when the DFS stack is empty.
  102.   scc_iterator() = default;
  103.  
  104. public:
  105.   static scc_iterator begin(const GraphT &G) {
  106.     return scc_iterator(GT::getEntryNode(G));
  107.   }
  108.   static scc_iterator end(const GraphT &) { return scc_iterator(); }
  109.  
  110.   /// Direct loop termination test which is more efficient than
  111.   /// comparison with \c end().
  112.   bool isAtEnd() const {
  113.     assert(!CurrentSCC.empty() || VisitStack.empty());
  114.     return CurrentSCC.empty();
  115.   }
  116.  
  117.   bool operator==(const scc_iterator &x) const {
  118.     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
  119.   }
  120.  
  121.   scc_iterator &operator++() {
  122.     GetNextSCC();
  123.     return *this;
  124.   }
  125.  
  126.   reference operator*() const {
  127.     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
  128.     return CurrentSCC;
  129.   }
  130.  
  131.   /// Test if the current SCC has a cycle.
  132.   ///
  133.   /// If the SCC has more than one node, this is trivially true.  If not, it may
  134.   /// still contain a cycle if the node has an edge back to itself.
  135.   bool hasCycle() const;
  136.  
  137.   /// This informs the \c scc_iterator that the specified \c Old node
  138.   /// has been deleted, and \c New is to be used in its place.
  139.   void ReplaceNode(NodeRef Old, NodeRef New) {
  140.     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
  141.     // Do the assignment in two steps, in case 'New' is not yet in the map, and
  142.     // inserting it causes the map to grow.
  143.     auto tempVal = nodeVisitNumbers[Old];
  144.     nodeVisitNumbers[New] = tempVal;
  145.     nodeVisitNumbers.erase(Old);
  146.   }
  147. };
  148.  
  149. template <class GraphT, class GT>
  150. void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
  151.   ++visitNum;
  152.   nodeVisitNumbers[N] = visitNum;
  153.   SCCNodeStack.push_back(N);
  154.   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
  155. #if 0 // Enable if needed when debugging.
  156.   dbgs() << "TarjanSCC: Node " << N <<
  157.         " : visitNum = " << visitNum << "\n";
  158. #endif
  159. }
  160.  
  161. template <class GraphT, class GT>
  162. void scc_iterator<GraphT, GT>::DFSVisitChildren() {
  163.   assert(!VisitStack.empty());
  164.   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
  165.     // TOS has at least one more child so continue DFS
  166.     NodeRef childN = *VisitStack.back().NextChild++;
  167.     typename DenseMap<NodeRef, unsigned>::iterator Visited =
  168.         nodeVisitNumbers.find(childN);
  169.     if (Visited == nodeVisitNumbers.end()) {
  170.       // this node has never been seen.
  171.       DFSVisitOne(childN);
  172.       continue;
  173.     }
  174.  
  175.     unsigned childNum = Visited->second;
  176.     if (VisitStack.back().MinVisited > childNum)
  177.       VisitStack.back().MinVisited = childNum;
  178.   }
  179. }
  180.  
  181. template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
  182.   CurrentSCC.clear(); // Prepare to compute the next SCC
  183.   while (!VisitStack.empty()) {
  184.     DFSVisitChildren();
  185.  
  186.     // Pop the leaf on top of the VisitStack.
  187.     NodeRef visitingN = VisitStack.back().Node;
  188.     unsigned minVisitNum = VisitStack.back().MinVisited;
  189.     assert(VisitStack.back().NextChild == GT::child_end(visitingN));
  190.     VisitStack.pop_back();
  191.  
  192.     // Propagate MinVisitNum to parent so we can detect the SCC starting node.
  193.     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
  194.       VisitStack.back().MinVisited = minVisitNum;
  195.  
  196. #if 0 // Enable if needed when debugging.
  197.     dbgs() << "TarjanSCC: Popped node " << visitingN <<
  198.           " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
  199.           nodeVisitNumbers[visitingN] << "\n";
  200. #endif
  201.  
  202.     if (minVisitNum != nodeVisitNumbers[visitingN])
  203.       continue;
  204.  
  205.     // A full SCC is on the SCCNodeStack!  It includes all nodes below
  206.     // visitingN on the stack.  Copy those nodes to CurrentSCC,
  207.     // reset their minVisit values, and return (this suspends
  208.     // the DFS traversal till the next ++).
  209.     do {
  210.       CurrentSCC.push_back(SCCNodeStack.back());
  211.       SCCNodeStack.pop_back();
  212.       nodeVisitNumbers[CurrentSCC.back()] = ~0U;
  213.     } while (CurrentSCC.back() != visitingN);
  214.     return;
  215.   }
  216. }
  217.  
  218. template <class GraphT, class GT>
  219. bool scc_iterator<GraphT, GT>::hasCycle() const {
  220.     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
  221.     if (CurrentSCC.size() > 1)
  222.       return true;
  223.     NodeRef N = CurrentSCC.front();
  224.     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
  225.          ++CI)
  226.       if (*CI == N)
  227.         return true;
  228.     return false;
  229.   }
  230.  
  231. /// Construct the begin iterator for a deduced graph type T.
  232. template <class T> scc_iterator<T> scc_begin(const T &G) {
  233.   return scc_iterator<T>::begin(G);
  234. }
  235.  
  236. /// Construct the end iterator for a deduced graph type T.
  237. template <class T> scc_iterator<T> scc_end(const T &G) {
  238.   return scc_iterator<T>::end(G);
  239. }
  240.  
  241. /// Sort the nodes of a directed SCC in the decreasing order of the edge
  242. /// weights. The instantiating GraphT type should have weighted edge type
  243. /// declared in its graph traits in order to use this iterator.
  244. ///
  245. /// This is implemented using Kruskal's minimal spanning tree algorithm followed
  246. /// by a BFS walk. First a maximum spanning tree (forest) is built based on all
  247. /// edges within the SCC collection. Then a BFS walk is initiated on tree nodes
  248. /// that do not have a predecessor. Finally, the BFS order computed is the
  249. /// traversal order of the nodes of the SCC. Such order ensures that
  250. /// high-weighted edges are visited first during the tranversal.
  251. template <class GraphT, class GT = GraphTraits<GraphT>>
  252. class scc_member_iterator {
  253.   using NodeType = typename GT::NodeType;
  254.   using EdgeType = typename GT::EdgeType;
  255.   using NodesType = std::vector<NodeType *>;
  256.  
  257.   // Auxilary node information used during the MST calculation.
  258.   struct NodeInfo {
  259.     NodeInfo *Group = this;
  260.     uint32_t Rank = 0;
  261.     bool Visited = true;
  262.   };
  263.  
  264.   // Find the root group of the node and compress the path from node to the
  265.   // root.
  266.   NodeInfo *find(NodeInfo *Node) {
  267.     if (Node->Group != Node)
  268.       Node->Group = find(Node->Group);
  269.     return Node->Group;
  270.   }
  271.  
  272.   // Union the source and target node into the same group and return true.
  273.   // Returns false if they are already in the same group.
  274.   bool unionGroups(const EdgeType *Edge) {
  275.     NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]);
  276.     NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]);
  277.  
  278.     // If the edge forms a cycle, do not add it to MST
  279.     if (G1 == G2)
  280.       return false;
  281.  
  282.     // Make the smaller rank tree a direct child or the root of high rank tree.
  283.     if (G1->Rank < G1->Rank)
  284.       G1->Group = G2;
  285.     else {
  286.       G2->Group = G1;
  287.       // If the ranks are the same, increment root of one tree by one.
  288.       if (G1->Rank == G2->Rank)
  289.         G2->Rank++;
  290.     }
  291.     return true;
  292.   }
  293.  
  294.   std::unordered_map<NodeType *, NodeInfo> NodeInfoMap;
  295.   NodesType Nodes;
  296.  
  297. public:
  298.   scc_member_iterator(const NodesType &InputNodes);
  299.  
  300.   NodesType &operator*() { return Nodes; }
  301. };
  302.  
  303. template <class GraphT, class GT>
  304. scc_member_iterator<GraphT, GT>::scc_member_iterator(
  305.     const NodesType &InputNodes) {
  306.   if (InputNodes.size() <= 1) {
  307.     Nodes = InputNodes;
  308.     return;
  309.   }
  310.  
  311.   // Initialize auxilary node information.
  312.   NodeInfoMap.clear();
  313.   for (auto *Node : InputNodes) {
  314.     // This is specifically used to construct a `NodeInfo` object in place. An
  315.     // insert operation will involve a copy construction which invalidate the
  316.     // initial value of the `Group` field which should be `this`.
  317.     (void)NodeInfoMap[Node].Group;
  318.   }
  319.  
  320.   // Sort edges by weights.
  321.   struct EdgeComparer {
  322.     bool operator()(const EdgeType *L, const EdgeType *R) const {
  323.       return L->Weight > R->Weight;
  324.     }
  325.   };
  326.  
  327.   std::multiset<const EdgeType *, EdgeComparer> SortedEdges;
  328.   for (auto *Node : InputNodes) {
  329.     for (auto &Edge : Node->Edges) {
  330.       if (NodeInfoMap.count(Edge.Target))
  331.         SortedEdges.insert(&Edge);
  332.     }
  333.   }
  334.  
  335.   // Traverse all the edges and compute the Maximum Weight Spanning Tree
  336.   // using Kruskal's algorithm.
  337.   std::unordered_set<const EdgeType *> MSTEdges;
  338.   for (auto *Edge : SortedEdges) {
  339.     if (unionGroups(Edge))
  340.       MSTEdges.insert(Edge);
  341.   }
  342.  
  343.   // Do BFS on MST, starting from nodes that have no incoming edge. These nodes
  344.   // are "roots" of the MST forest. This ensures that nodes are visited before
  345.   // their decsendents are, thus ensures hot edges are processed before cold
  346.   // edges, based on how MST is computed.
  347.   for (const auto *Edge : MSTEdges)
  348.     NodeInfoMap[Edge->Target].Visited = false;
  349.  
  350.   std::queue<NodeType *> Queue;
  351.   // Initialze the queue with MST roots. Note that walking through SortedEdges
  352.   // instead of NodeInfoMap ensures an ordered deterministic push.
  353.   for (auto *Edge : SortedEdges) {
  354.     if (NodeInfoMap[Edge->Source].Visited) {
  355.       Queue.push(Edge->Source);
  356.       NodeInfoMap[Edge->Source].Visited = false;
  357.     }
  358.   }
  359.  
  360.   while (!Queue.empty()) {
  361.     auto *Node = Queue.front();
  362.     Queue.pop();
  363.     Nodes.push_back(Node);
  364.     for (auto &Edge : Node->Edges) {
  365.       if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) {
  366.         NodeInfoMap[Edge.Target].Visited = true;
  367.         Queue.push(Edge.Target);
  368.       }
  369.     }
  370.   }
  371.  
  372.   assert(InputNodes.size() == Nodes.size() && "missing nodes in MST");
  373.   std::reverse(Nodes.begin(), Nodes.end());
  374. }
  375. } // end namespace llvm
  376.  
  377. #endif // LLVM_ADT_SCCITERATOR_H
  378.