//===- PriorityWorklist.h - Worklist with insertion priority ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
///
 
/// This file provides a priority worklist. See the class comments for details.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_PRIORITYWORKLIST_H
 
#define LLVM_ADT_PRIORITYWORKLIST_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Support/Compiler.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
#include <type_traits>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
/// A FILO worklist that prioritizes on re-insertion without duplication.
 
///
 
/// This is very similar to a \c SetVector with the primary difference that
 
/// while re-insertion does not create a duplicate, it does adjust the
 
/// visitation order to respect the last insertion point. This can be useful
 
/// when the visit order needs to be prioritized based on insertion point
 
/// without actually having duplicate visits.
 
///
 
/// Note that this doesn't prevent re-insertion of elements which have been
 
/// visited -- if you need to break cycles, a set will still be necessary.
 
///
 
/// The type \c T must be default constructable to a null value that will be
 
/// ignored. It is an error to insert such a value, and popping elements will
 
/// never produce such a value. It is expected to be used with common nullable
 
/// types like pointers or optionals.
 
///
 
/// Internally this uses a vector to store the worklist and a map to identify
 
/// existing elements in the worklist. Both of these may be customized, but the
 
/// map must support the basic DenseMap API for mapping from a T to an integer
 
/// index into the vector.
 
///
 
/// A partial specialization is provided to automatically select a SmallVector
 
/// and a SmallDenseMap if custom data structures are not provided.
 
template <typename T, typename VectorT = std::vector<T>,
 
          typename MapT = DenseMap<T, ptrdiff_t>>
 
class PriorityWorklist {
 
public:
 
  using value_type = T;
 
  using key_type = T;
 
  using reference = T&;
 
  using const_reference = const T&;
 
  using size_type = typename MapT::size_type;
 
 
 
  /// Construct an empty PriorityWorklist
 
  PriorityWorklist() = default;
 
 
 
  /// Determine if the PriorityWorklist is empty or not.
 
  bool empty() const {
 
    return V.empty();
 
  }
 
 
 
  /// Returns the number of elements in the worklist.
 
  size_type size() const {
 
    return M.size();
 
  }
 
 
 
  /// Count the number of elements of a given key in the PriorityWorklist.
 
  /// \returns 0 if the element is not in the PriorityWorklist, 1 if it is.
 
  size_type count(const key_type &key) const {
 
    return M.count(key);
 
  }
 
 
 
  /// Return the last element of the PriorityWorklist.
 
  const T &back() const {
 
    assert(!empty() && "Cannot call back() on empty PriorityWorklist!");
 
    return V.back();
 
  }
 
 
 
  /// Insert a new element into the PriorityWorklist.
 
  /// \returns true if the element was inserted into the PriorityWorklist.
 
  bool insert(const T &X) {
 
    assert(X != T() && "Cannot insert a null (default constructed) value!");
 
    auto InsertResult = M.insert({X, V.size()});
 
    if (InsertResult.second) {
 
      // Fresh value, just append it to the vector.
 
      V.push_back(X);
 
      return true;
 
    }
 
 
 
    auto &Index = InsertResult.first->second;
 
    assert(V[Index] == X && "Value not actually at index in map!");
 
    if (Index != (ptrdiff_t)(V.size() - 1)) {
 
      // If the element isn't at the back, null it out and append a fresh one.
 
      V[Index] = T();
 
      Index = (ptrdiff_t)V.size();
 
      V.push_back(X);
 
    }
 
    return false;
 
  }
 
 
 
  /// Insert a sequence of new elements into the PriorityWorklist.
 
  template <typename SequenceT>
 
  std::enable_if_t<!std::is_convertible<SequenceT, T>::value>
 
  insert(SequenceT &&Input) {
 
    if (std::begin(Input) == std::end(Input))
 
      // Nothing to do for an empty input sequence.
 
      return;
 
 
 
    // First pull the input sequence into the vector as a bulk append
 
    // operation.
 
    ptrdiff_t StartIndex = V.size();
 
    V.insert(V.end(), std::begin(Input), std::end(Input));
 
    // Now walk backwards fixing up the index map and deleting any duplicates.
 
    for (ptrdiff_t i = V.size() - 1; i >= StartIndex; --i) {
 
      auto InsertResult = M.insert({V[i], i});
 
      if (InsertResult.second)
 
        continue;
 
 
 
      // If the existing index is before this insert's start, nuke that one and
 
      // move it up.
 
      ptrdiff_t &Index = InsertResult.first->second;
 
      if (Index < StartIndex) {
 
        V[Index] = T();
 
        Index = i;
 
        continue;
 
      }
 
 
 
      // Otherwise the existing one comes first so just clear out the value in
 
      // this slot.
 
      V[i] = T();
 
    }
 
  }
 
 
 
  /// Remove the last element of the PriorityWorklist.
 
  void pop_back() {
 
    assert(!empty() && "Cannot remove an element when empty!");
 
    assert(back() != T() && "Cannot have a null element at the back!");
 
    M.erase(back());
 
    do {
 
      V.pop_back();
 
    } while (!V.empty() && V.back() == T());
 
  }
 
 
 
  [[nodiscard]] T pop_back_val() {
 
    T Ret = back();
 
    pop_back();
 
    return Ret;
 
  }
 
 
 
  /// Erase an item from the worklist.
 
  ///
 
  /// Note that this is constant time due to the nature of the worklist implementation.
 
  bool erase(const T& X) {
 
    auto I = M.find(X);
 
    if (I == M.end())
 
      return false;
 
 
 
    assert(V[I->second] == X && "Value not actually at index in map!");
 
    if (I->second == (ptrdiff_t)(V.size() - 1)) {
 
      do {
 
        V.pop_back();
 
      } while (!V.empty() && V.back() == T());
 
    } else {
 
      V[I->second] = T();
 
    }
 
    M.erase(I);
 
    return true;
 
  }
 
 
 
  /// Erase items from the set vector based on a predicate function.
 
  ///
 
  /// This is intended to be equivalent to the following code, if we could
 
  /// write it:
 
  ///
 
  /// \code
 
  ///   V.erase(remove_if(V, P), V.end());
 
  /// \endcode
 
  ///
 
  /// However, PriorityWorklist doesn't expose non-const iterators, making any
 
  /// algorithm like remove_if impossible to use.
 
  ///
 
  /// \returns true if any element is removed.
 
  template <typename UnaryPredicate>
 
  bool erase_if(UnaryPredicate P) {
 
    typename VectorT::iterator E =
 
        remove_if(V, TestAndEraseFromMap<UnaryPredicate>(P, M));
 
    if (E == V.end())
 
      return false;
 
    for (auto I = V.begin(); I != E; ++I)
 
      if (*I != T())
 
        M[*I] = I - V.begin();
 
    V.erase(E, V.end());
 
    return true;
 
  }
 
 
 
  /// Reverse the items in the PriorityWorklist.
 
  ///
 
  /// This does an in-place reversal. Other kinds of reverse aren't easy to
 
  /// support in the face of the worklist semantics.
 
 
 
  /// Completely clear the PriorityWorklist
 
  void clear() {
 
    M.clear();
 
    V.clear();
 
  }
 
 
 
private:
 
  /// A wrapper predicate designed for use with std::remove_if.
 
  ///
 
  /// This predicate wraps a predicate suitable for use with std::remove_if to
 
  /// call M.erase(x) on each element which is slated for removal. This just
 
  /// allows the predicate to be move only which we can't do with lambdas
 
  /// today.
 
  template <typename UnaryPredicateT>
 
  class TestAndEraseFromMap {
 
    UnaryPredicateT P;
 
    MapT &M;
 
 
 
  public:
 
    TestAndEraseFromMap(UnaryPredicateT P, MapT &M)
 
        : P(std::move(P)), M(M) {}
 
 
 
    bool operator()(const T &Arg) {
 
      if (Arg == T())
 
        // Skip null values in the PriorityWorklist.
 
        return false;
 
 
 
      if (P(Arg)) {
 
        M.erase(Arg);
 
        return true;
 
      }
 
      return false;
 
    }
 
  };
 
 
 
  /// The map from value to index in the vector.
 
  MapT M;
 
 
 
  /// The vector of elements in insertion order.
 
  VectorT V;
 
};
 
 
 
/// A version of \c PriorityWorklist that selects small size optimized data
 
/// structures for the vector and map.
 
template <typename T, unsigned N>
 
class SmallPriorityWorklist
 
    : public PriorityWorklist<T, SmallVector<T, N>,
 
                              SmallDenseMap<T, ptrdiff_t>> {
 
public:
 
  SmallPriorityWorklist() = default;
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_PRIORITYWORKLIST_H