//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file builds on the ADT/GraphTraits.h file to build a generic graph
 
/// post order iterator.  This should work over any graph type that has a
 
/// GraphTraits specialization.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_POSTORDERITERATOR_H
 
#define LLVM_ADT_POSTORDERITERATOR_H
 
 
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include <iterator>
 
#include <optional>
 
#include <set>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
// The po_iterator_storage template provides access to the set of already
 
// visited nodes during the po_iterator's depth-first traversal.
 
//
 
// The default implementation simply contains a set of visited nodes, while
 
// the External=true version uses a reference to an external set.
 
//
 
// It is possible to prune the depth-first traversal in several ways:
 
//
 
// - When providing an external set that already contains some graph nodes,
 
//   those nodes won't be visited again. This is useful for restarting a
 
//   post-order traversal on a graph with nodes that aren't dominated by a
 
//   single node.
 
//
 
// - By providing a custom SetType class, unwanted graph nodes can be excluded
 
//   by having the insert() function return false. This could for example
 
//   confine a CFG traversal to blocks in a specific loop.
 
//
 
// - Finally, by specializing the po_iterator_storage template itself, graph
 
//   edges can be pruned by returning false in the insertEdge() function. This
 
//   could be used to remove loop back-edges from the CFG seen by po_iterator.
 
//
 
// A specialized po_iterator_storage class can observe both the pre-order and
 
// the post-order. The insertEdge() function is called in a pre-order, while
 
// the finishPostorder() function is called just before the po_iterator moves
 
// on to the next node.
 
 
 
/// Default po_iterator_storage implementation with an internal set object.
 
template<class SetType, bool External>
 
class po_iterator_storage {
 
  SetType Visited;
 
 
 
public:
 
  // Return true if edge destination should be visited.
 
  template <typename NodeRef>
 
  bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
 
    return Visited.insert(To).second;
 
  }
 
 
 
  // Called after all children of BB have been visited.
 
  template <typename NodeRef> void finishPostorder(NodeRef BB) {}
 
};
 
 
 
/// Specialization of po_iterator_storage that references an external set.
 
template<class SetType>
 
class po_iterator_storage<SetType, true> {
 
  SetType &Visited;
 
 
 
public:
 
  po_iterator_storage(SetType &VSet) : Visited(VSet) {}
 
  po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
 
 
 
  // Return true if edge destination should be visited, called with From = 0 for
 
  // the root node.
 
  // Graph edges can be pruned by specializing this function.
 
  template <class NodeRef>
 
  bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
 
    return Visited.insert(To).second;
 
  }
 
 
 
  // Called after all children of BB have been visited.
 
  template <class NodeRef> void finishPostorder(NodeRef BB) {}
 
};
 
 
 
template <class GraphT,
 
          class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
 
          bool ExtStorage = false, class GT = GraphTraits<GraphT>>
 
class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
 
public:
 
  using iterator_category = std::forward_iterator_tag;
 
  using value_type = typename GT::NodeRef;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
 
 
private:
 
  using NodeRef = typename GT::NodeRef;
 
  using ChildItTy = typename GT::ChildIteratorType;
 
 
 
  // VisitStack - Used to maintain the ordering.  Top = current block
 
  // First element is basic block pointer, second is the 'next child' to visit
 
  SmallVector<std::pair<NodeRef, ChildItTy>, 8> VisitStack;
 
 
 
  po_iterator(NodeRef BB) {
 
    this->insertEdge(std::optional<NodeRef>(), BB);
 
    VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
 
    traverseChild();
 
  }
 
 
 
  po_iterator() = default; // End is when stack is empty.
 
 
 
  po_iterator(NodeRef BB, SetType &S)
 
      : po_iterator_storage<SetType, ExtStorage>(S) {
 
    if (this->insertEdge(std::optional<NodeRef>(), BB)) {
 
      VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
 
      traverseChild();
 
    }
 
  }
 
 
 
  po_iterator(SetType &S)
 
      : po_iterator_storage<SetType, ExtStorage>(S) {
 
  } // End is when stack is empty.
 
 
 
  void traverseChild() {
 
    while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
 
      NodeRef BB = *VisitStack.back().second++;
 
      if (this->insertEdge(std::optional<NodeRef>(VisitStack.back().first),
 
                           BB)) {
 
        // If the block is not visited...
 
        VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
 
      }
 
    }
 
  }
 
 
 
public:
 
  // Provide static "constructors"...
 
  static po_iterator begin(const GraphT &G) {
 
    return po_iterator(GT::getEntryNode(G));
 
  }
 
  static po_iterator end(const GraphT &G) { return po_iterator(); }
 
 
 
  static po_iterator begin(const GraphT &G, SetType &S) {
 
    return po_iterator(GT::getEntryNode(G), S);
 
  }
 
  static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
 
 
 
  bool operator==(const po_iterator &x) const {
 
    return VisitStack == x.VisitStack;
 
  }
 
  bool operator!=(const po_iterator &x) const { return !(*this == x); }
 
 
 
  const NodeRef &operator*() const { return VisitStack.back().first; }
 
 
 
  // This is a nonstandard operator-> that dereferences the pointer an extra
 
  // time... so that you can actually call methods ON the BasicBlock, because
 
  // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
 
  //
 
  NodeRef operator->() const { return **this; }
 
 
 
  po_iterator &operator++() { // Preincrement
 
    this->finishPostorder(VisitStack.back().first);
 
    VisitStack.pop_back();
 
    if (!VisitStack.empty())
 
      traverseChild();
 
    return *this;
 
  }
 
 
 
  po_iterator operator++(int) { // Postincrement
 
    po_iterator tmp = *this;
 
    ++*this;
 
    return tmp;
 
  }
 
};
 
 
 
// Provide global constructors that automatically figure out correct types...
 
//
 
template <class T>
 
po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
 
template <class T>
 
po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
 
 
 
template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
 
  return make_range(po_begin(G), po_end(G));
 
}
 
 
 
// Provide global definitions of external postorder iterators...
 
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
 
struct po_ext_iterator : public po_iterator<T, SetType, true> {
 
  po_ext_iterator(const po_iterator<T, SetType, true> &V) :
 
  po_iterator<T, SetType, true>(V) {}
 
};
 
 
 
template<class T, class SetType>
 
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
 
  return po_ext_iterator<T, SetType>::begin(G, S);
 
}
 
 
 
template<class T, class SetType>
 
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
 
  return po_ext_iterator<T, SetType>::end(G, S);
 
}
 
 
 
template <class T, class SetType>
 
iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
 
  return make_range(po_ext_begin(G, S), po_ext_end(G, S));
 
}
 
 
 
// Provide global definitions of inverse post order iterators...
 
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
 
          bool External = false>
 
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
 
  ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
 
     po_iterator<Inverse<T>, SetType, External> (V) {}
 
};
 
 
 
template <class T>
 
ipo_iterator<T> ipo_begin(const T &G) {
 
  return ipo_iterator<T>::begin(G);
 
}
 
 
 
template <class T>
 
ipo_iterator<T> ipo_end(const T &G){
 
  return ipo_iterator<T>::end(G);
 
}
 
 
 
template <class T>
 
iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
 
  return make_range(ipo_begin(G), ipo_end(G));
 
}
 
 
 
// Provide global definitions of external inverse postorder iterators...
 
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
 
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
 
  ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
 
    ipo_iterator<T, SetType, true>(V) {}
 
  ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
 
    ipo_iterator<T, SetType, true>(V) {}
 
};
 
 
 
template <class T, class SetType>
 
ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
 
  return ipo_ext_iterator<T, SetType>::begin(G, S);
 
}
 
 
 
template <class T, class SetType>
 
ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
 
  return ipo_ext_iterator<T, SetType>::end(G, S);
 
}
 
 
 
template <class T, class SetType>
 
iterator_range<ipo_ext_iterator<T, SetType>>
 
inverse_post_order_ext(const T &G, SetType &S) {
 
  return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
 
}
 
 
 
//===--------------------------------------------------------------------===//
 
// Reverse Post Order CFG iterator code
 
//===--------------------------------------------------------------------===//
 
//
 
// This is used to visit basic blocks in a method in reverse post order.  This
 
// class is awkward to use because I don't know a good incremental algorithm to
 
// computer RPO from a graph.  Because of this, the construction of the
 
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
 
// with a postorder iterator to build the data structures).  The moral of this
 
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
 
//
 
// Because it does the traversal in its constructor, it won't invalidate when
 
// BasicBlocks are removed, *but* it may contain erased blocks. Some places
 
// rely on this behavior (i.e. GVN).
 
//
 
// This class should be used like this:
 
// {
 
//   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
 
//   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
 
//      ...
 
//   }
 
//   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
 
//      ...
 
//   }
 
// }
 
//
 
 
 
template<class GraphT, class GT = GraphTraits<GraphT>>
 
class ReversePostOrderTraversal {
 
  using NodeRef = typename GT::NodeRef;
 
 
 
  std::vector<NodeRef> Blocks; // Block list in normal PO order
 
 
 
  void Initialize(const GraphT &G) {
 
    std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
 
  }
 
 
 
public:
 
  using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
 
  using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
 
 
 
  ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
 
 
 
  // Because we want a reverse post order, use reverse iterators from the vector
 
  rpo_iterator begin() { return Blocks.rbegin(); }
 
  const_rpo_iterator begin() const { return Blocks.crbegin(); }
 
  rpo_iterator end() { return Blocks.rend(); }
 
  const_rpo_iterator end() const { return Blocks.crend(); }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_POSTORDERITERATOR_H