//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines the ImutAVLTree and ImmutableSet classes.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_IMMUTABLESET_H
 
#define LLVM_ADT_IMMUTABLESET_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/FoldingSet.h"
 
#include "llvm/ADT/IntrusiveRefCntPtr.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Support/Allocator.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <cassert>
 
#include <cstdint>
 
#include <functional>
 
#include <iterator>
 
#include <new>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
//===----------------------------------------------------------------------===//
 
// Immutable AVL-Tree Definition.
 
//===----------------------------------------------------------------------===//
 
 
 
template <typename ImutInfo> class ImutAVLFactory;
 
template <typename ImutInfo> class ImutIntervalAVLFactory;
 
template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
 
template <typename ImutInfo> class ImutAVLTreeGenericIterator;
 
 
 
template <typename ImutInfo >
 
class ImutAVLTree {
 
public:
 
  using key_type_ref = typename ImutInfo::key_type_ref;
 
  using value_type = typename ImutInfo::value_type;
 
  using value_type_ref = typename ImutInfo::value_type_ref;
 
  using Factory = ImutAVLFactory<ImutInfo>;
 
  using iterator = ImutAVLTreeInOrderIterator<ImutInfo>;
 
 
 
  friend class ImutAVLFactory<ImutInfo>;
 
  friend class ImutIntervalAVLFactory<ImutInfo>;
 
  friend class ImutAVLTreeGenericIterator<ImutInfo>;
 
 
 
  //===----------------------------------------------------===//
 
  // Public Interface.
 
  //===----------------------------------------------------===//
 
 
 
  /// Return a pointer to the left subtree.  This value
 
  ///  is NULL if there is no left subtree.
 
  ImutAVLTree *getLeft() const { return left; }
 
 
 
  /// Return a pointer to the right subtree.  This value is
 
  ///  NULL if there is no right subtree.
 
  ImutAVLTree *getRight() const { return right; }
 
 
 
  /// getHeight - Returns the height of the tree.  A tree with no subtrees
 
  ///  has a height of 1.
 
  unsigned getHeight() const { return height; }
 
 
 
  /// getValue - Returns the data value associated with the tree node.
 
  const value_type& getValue() const { return value; }
 
 
 
  /// find - Finds the subtree associated with the specified key value.
 
  ///  This method returns NULL if no matching subtree is found.
 
  ImutAVLTree* find(key_type_ref K) {
 
    ImutAVLTree *T = this;
 
    while (T) {
 
      key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
 
      if (ImutInfo::isEqual(K,CurrentKey))
 
        return T;
 
      else if (ImutInfo::isLess(K,CurrentKey))
 
        T = T->getLeft();
 
      else
 
        T = T->getRight();
 
    }
 
    return nullptr;
 
  }
 
 
 
  /// getMaxElement - Find the subtree associated with the highest ranged
 
  ///  key value.
 
  ImutAVLTree* getMaxElement() {
 
    ImutAVLTree *T = this;
 
    ImutAVLTree *Right = T->getRight();
 
    while (Right) { T = Right; Right = T->getRight(); }
 
    return T;
 
  }
 
 
 
  /// size - Returns the number of nodes in the tree, which includes
 
  ///  both leaves and non-leaf nodes.
 
  unsigned size() const {
 
    unsigned n = 1;
 
    if (const ImutAVLTree* L = getLeft())
 
      n += L->size();
 
    if (const ImutAVLTree* R = getRight())
 
      n += R->size();
 
    return n;
 
  }
 
 
 
  /// begin - Returns an iterator that iterates over the nodes of the tree
 
  ///  in an inorder traversal.  The returned iterator thus refers to the
 
  ///  the tree node with the minimum data element.
 
  iterator begin() const { return iterator(this); }
 
 
 
  /// end - Returns an iterator for the tree that denotes the end of an
 
  ///  inorder traversal.
 
  iterator end() const { return iterator(); }
 
 
 
  bool isElementEqual(value_type_ref V) const {
 
    // Compare the keys.
 
    if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
 
                           ImutInfo::KeyOfValue(V)))
 
      return false;
 
 
 
    // Also compare the data values.
 
    if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
 
                               ImutInfo::DataOfValue(V)))
 
      return false;
 
 
 
    return true;
 
  }
 
 
 
  bool isElementEqual(const ImutAVLTree* RHS) const {
 
    return isElementEqual(RHS->getValue());
 
  }
 
 
 
  /// isEqual - Compares two trees for structural equality and returns true
 
  ///   if they are equal.  This worst case performance of this operation is
 
  //    linear in the sizes of the trees.
 
  bool isEqual(const ImutAVLTree& RHS) const {
 
    if (&RHS == this)
 
      return true;
 
 
 
    iterator LItr = begin(), LEnd = end();
 
    iterator RItr = RHS.begin(), REnd = RHS.end();
 
 
 
    while (LItr != LEnd && RItr != REnd) {
 
      if (&*LItr == &*RItr) {
 
        LItr.skipSubTree();
 
        RItr.skipSubTree();
 
        continue;
 
      }
 
 
 
      if (!LItr->isElementEqual(&*RItr))
 
        return false;
 
 
 
      ++LItr;
 
      ++RItr;
 
    }
 
 
 
    return LItr == LEnd && RItr == REnd;
 
  }
 
 
 
  /// isNotEqual - Compares two trees for structural inequality.  Performance
 
  ///  is the same is isEqual.
 
  bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
 
 
 
  /// contains - Returns true if this tree contains a subtree (node) that
 
  ///  has an data element that matches the specified key.  Complexity
 
  ///  is logarithmic in the size of the tree.
 
  bool contains(key_type_ref K) { return (bool) find(K); }
 
 
 
  /// validateTree - A utility method that checks that the balancing and
 
  ///  ordering invariants of the tree are satisfied.  It is a recursive
 
  ///  method that returns the height of the tree, which is then consumed
 
  ///  by the enclosing validateTree call.  External callers should ignore the
 
  ///  return value.  An invalid tree will cause an assertion to fire in
 
  ///  a debug build.
 
  unsigned validateTree() const {
 
    unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
 
    unsigned HR = getRight() ? getRight()->validateTree() : 0;
 
    (void) HL;
 
    (void) HR;
 
 
 
    assert(getHeight() == ( HL > HR ? HL : HR ) + 1
 
            && "Height calculation wrong");
 
 
 
    assert((HL > HR ? HL-HR : HR-HL) <= 2
 
           && "Balancing invariant violated");
 
 
 
    assert((!getLeft() ||
 
            ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
 
                             ImutInfo::KeyOfValue(getValue()))) &&
 
           "Value in left child is not less that current value");
 
 
 
    assert((!getRight() ||
 
             ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
 
                              ImutInfo::KeyOfValue(getRight()->getValue()))) &&
 
           "Current value is not less that value of right child");
 
 
 
    return getHeight();
 
  }
 
 
 
  //===----------------------------------------------------===//
 
  // Internal values.
 
  //===----------------------------------------------------===//
 
 
 
private:
 
  Factory *factory;
 
  ImutAVLTree *left;
 
  ImutAVLTree *right;
 
  ImutAVLTree *prev = nullptr;
 
  ImutAVLTree *next = nullptr;
 
 
 
  unsigned height : 28;
 
  bool IsMutable : 1;
 
  bool IsDigestCached : 1;
 
  bool IsCanonicalized : 1;
 
 
 
  value_type value;
 
  uint32_t digest = 0;
 
  uint32_t refCount = 0;
 
 
 
  //===----------------------------------------------------===//
 
  // Internal methods (node manipulation; used by Factory).
 
  //===----------------------------------------------------===//
 
 
 
private:
 
  /// ImutAVLTree - Internal constructor that is only called by
 
  ///   ImutAVLFactory.
 
  ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
 
              unsigned height)
 
    : factory(f), left(l), right(r), height(height), IsMutable(true),
 
      IsDigestCached(false), IsCanonicalized(false), value(v)
 
  {
 
    if (left) left->retain();
 
    if (right) right->retain();
 
  }
 
 
 
  /// isMutable - Returns true if the left and right subtree references
 
  ///  (as well as height) can be changed.  If this method returns false,
 
  ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
 
  ///  object should always have this method return true.  Further, if this
 
  ///  method returns false for an instance of ImutAVLTree, all subtrees
 
  ///  will also have this method return false.  The converse is not true.
 
  bool isMutable() const { return IsMutable; }
 
 
 
  /// hasCachedDigest - Returns true if the digest for this tree is cached.
 
  ///  This can only be true if the tree is immutable.
 
  bool hasCachedDigest() const { return IsDigestCached; }
 
 
 
  //===----------------------------------------------------===//
 
  // Mutating operations.  A tree root can be manipulated as
 
  // long as its reference has not "escaped" from internal
 
  // methods of a factory object (see below).  When a tree
 
  // pointer is externally viewable by client code, the
 
  // internal "mutable bit" is cleared to mark the tree
 
  // immutable.  Note that a tree that still has its mutable
 
  // bit set may have children (subtrees) that are themselves
 
  // immutable.
 
  //===----------------------------------------------------===//
 
 
 
  /// markImmutable - Clears the mutable flag for a tree.  After this happens,
 
  ///   it is an error to call setLeft(), setRight(), and setHeight().
 
  void markImmutable() {
 
    assert(isMutable() && "Mutable flag already removed.");
 
    IsMutable = false;
 
  }
 
 
 
  /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
 
  void markedCachedDigest() {
 
    assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
 
    IsDigestCached = true;
 
  }
 
 
 
  /// setHeight - Changes the height of the tree.  Used internally by
 
  ///  ImutAVLFactory.
 
  void setHeight(unsigned h) {
 
    assert(isMutable() && "Only a mutable tree can have its height changed.");
 
    height = h;
 
  }
 
 
 
  static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
 
                                value_type_ref V) {
 
    uint32_t digest = 0;
 
 
 
    if (L)
 
      digest += L->computeDigest();
 
 
 
    // Compute digest of stored data.
 
    FoldingSetNodeID ID;
 
    ImutInfo::Profile(ID,V);
 
    digest += ID.ComputeHash();
 
 
 
    if (R)
 
      digest += R->computeDigest();
 
 
 
    return digest;
 
  }
 
 
 
  uint32_t computeDigest() {
 
    // Check the lowest bit to determine if digest has actually been
 
    // pre-computed.
 
    if (hasCachedDigest())
 
      return digest;
 
 
 
    uint32_t X = computeDigest(getLeft(), getRight(), getValue());
 
    digest = X;
 
    markedCachedDigest();
 
    return X;
 
  }
 
 
 
  //===----------------------------------------------------===//
 
  // Reference count operations.
 
  //===----------------------------------------------------===//
 
 
 
public:
 
  void retain() { ++refCount; }
 
 
 
  void release() {
 
    assert(refCount > 0);
 
    if (--refCount == 0)
 
      destroy();
 
  }
 
 
 
  void destroy() {
 
    if (left)
 
      left->release();
 
    if (right)
 
      right->release();
 
    if (IsCanonicalized) {
 
      if (next)
 
        next->prev = prev;
 
 
 
      if (prev)
 
        prev->next = next;
 
      else
 
        factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
 
    }
 
 
 
    // We need to clear the mutability bit in case we are
 
    // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
 
    IsMutable = false;
 
    factory->freeNodes.push_back(this);
 
  }
 
};
 
 
 
template <typename ImutInfo>
 
struct IntrusiveRefCntPtrInfo<ImutAVLTree<ImutInfo>> {
 
  static void retain(ImutAVLTree<ImutInfo> *Tree) { Tree->retain(); }
 
  static void release(ImutAVLTree<ImutInfo> *Tree) { Tree->release(); }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Immutable AVL-Tree Factory class.
 
//===----------------------------------------------------------------------===//
 
 
 
template <typename ImutInfo >
 
class ImutAVLFactory {
 
  friend class ImutAVLTree<ImutInfo>;
 
 
 
  using TreeTy = ImutAVLTree<ImutInfo>;
 
  using value_type_ref = typename TreeTy::value_type_ref;
 
  using key_type_ref = typename TreeTy::key_type_ref;
 
  using CacheTy = DenseMap<unsigned, TreeTy*>;
 
 
 
  CacheTy Cache;
 
  uintptr_t Allocator;
 
  std::vector<TreeTy*> createdNodes;
 
  std::vector<TreeTy*> freeNodes;
 
 
 
  bool ownsAllocator() const {
 
    return (Allocator & 0x1) == 0;
 
  }
 
 
 
  BumpPtrAllocator& getAllocator() const {
 
    return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
 
  }
 
 
 
  //===--------------------------------------------------===//
 
  // Public interface.
 
  //===--------------------------------------------------===//
 
 
 
public:
 
  ImutAVLFactory()
 
    : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
 
 
 
  ImutAVLFactory(BumpPtrAllocator& Alloc)
 
    : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
 
 
 
  ~ImutAVLFactory() {
 
    if (ownsAllocator()) delete &getAllocator();
 
  }
 
 
 
  TreeTy* add(TreeTy* T, value_type_ref V) {
 
    T = add_internal(V,T);
 
    markImmutable(T);
 
    recoverNodes();
 
    return T;
 
  }
 
 
 
  TreeTy* remove(TreeTy* T, key_type_ref V) {
 
    T = remove_internal(V,T);
 
    markImmutable(T);
 
    recoverNodes();
 
    return T;
 
  }
 
 
 
  TreeTy* getEmptyTree() const { return nullptr; }
 
 
 
protected:
 
  //===--------------------------------------------------===//
 
  // A bunch of quick helper functions used for reasoning
 
  // about the properties of trees and their children.
 
  // These have succinct names so that the balancing code
 
  // is as terse (and readable) as possible.
 
  //===--------------------------------------------------===//
 
 
 
  bool            isEmpty(TreeTy* T) const { return !T; }
 
  unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
 
  TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
 
  TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
 
  value_type_ref  getValue(TreeTy* T) const { return T->value; }
 
 
 
  // Make sure the index is not the Tombstone or Entry key of the DenseMap.
 
  static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
 
 
 
  unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
 
    unsigned hl = getHeight(L);
 
    unsigned hr = getHeight(R);
 
    return (hl > hr ? hl : hr) + 1;
 
  }
 
 
 
  static bool compareTreeWithSection(TreeTy* T,
 
                                     typename TreeTy::iterator& TI,
 
                                     typename TreeTy::iterator& TE) {
 
    typename TreeTy::iterator I = T->begin(), E = T->end();
 
    for ( ; I!=E ; ++I, ++TI) {
 
      if (TI == TE || !I->isElementEqual(&*TI))
 
        return false;
 
    }
 
    return true;
 
  }
 
 
 
  //===--------------------------------------------------===//
 
  // "createNode" is used to generate new tree roots that link
 
  // to other trees.  The function may also simply move links
 
  // in an existing root if that root is still marked mutable.
 
  // This is necessary because otherwise our balancing code
 
  // would leak memory as it would create nodes that are
 
  // then discarded later before the finished tree is
 
  // returned to the caller.
 
  //===--------------------------------------------------===//
 
 
 
  TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
 
    BumpPtrAllocator& A = getAllocator();
 
    TreeTy* T;
 
    if (!freeNodes.empty()) {
 
      T = freeNodes.back();
 
      freeNodes.pop_back();
 
      assert(T != L);
 
      assert(T != R);
 
    } else {
 
      T = (TreeTy*) A.Allocate<TreeTy>();
 
    }
 
    new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
 
    createdNodes.push_back(T);
 
    return T;
 
  }
 
 
 
  TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
 
    return createNode(newLeft, getValue(oldTree), newRight);
 
  }
 
 
 
  void recoverNodes() {
 
    for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
 
      TreeTy *N = createdNodes[i];
 
      if (N->isMutable() && N->refCount == 0)
 
        N->destroy();
 
    }
 
    createdNodes.clear();
 
  }
 
 
 
  /// balanceTree - Used by add_internal and remove_internal to
 
  ///  balance a newly created tree.
 
  TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
 
    unsigned hl = getHeight(L);
 
    unsigned hr = getHeight(R);
 
 
 
    if (hl > hr + 2) {
 
      assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
 
 
 
      TreeTy *LL = getLeft(L);
 
      TreeTy *LR = getRight(L);
 
 
 
      if (getHeight(LL) >= getHeight(LR))
 
        return createNode(LL, L, createNode(LR,V,R));
 
 
 
      assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
 
 
 
      TreeTy *LRL = getLeft(LR);
 
      TreeTy *LRR = getRight(LR);
 
 
 
      return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
 
    }
 
 
 
    if (hr > hl + 2) {
 
      assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
 
 
 
      TreeTy *RL = getLeft(R);
 
      TreeTy *RR = getRight(R);
 
 
 
      if (getHeight(RR) >= getHeight(RL))
 
        return createNode(createNode(L,V,RL), R, RR);
 
 
 
      assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
 
 
 
      TreeTy *RLL = getLeft(RL);
 
      TreeTy *RLR = getRight(RL);
 
 
 
      return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
 
    }
 
 
 
    return createNode(L,V,R);
 
  }
 
 
 
  /// add_internal - Creates a new tree that includes the specified
 
  ///  data and the data from the original tree.  If the original tree
 
  ///  already contained the data item, the original tree is returned.
 
  TreeTy* add_internal(value_type_ref V, TreeTy* T) {
 
    if (isEmpty(T))
 
      return createNode(T, V, T);
 
    assert(!T->isMutable());
 
 
 
    key_type_ref K = ImutInfo::KeyOfValue(V);
 
    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
 
 
 
    if (ImutInfo::isEqual(K,KCurrent))
 
      return createNode(getLeft(T), V, getRight(T));
 
    else if (ImutInfo::isLess(K,KCurrent))
 
      return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
 
    else
 
      return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
 
  }
 
 
 
  /// remove_internal - Creates a new tree that includes all the data
 
  ///  from the original tree except the specified data.  If the
 
  ///  specified data did not exist in the original tree, the original
 
  ///  tree is returned.
 
  TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
 
    if (isEmpty(T))
 
      return T;
 
 
 
    assert(!T->isMutable());
 
 
 
    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
 
 
 
    if (ImutInfo::isEqual(K,KCurrent)) {
 
      return combineTrees(getLeft(T), getRight(T));
 
    } else if (ImutInfo::isLess(K,KCurrent)) {
 
      return balanceTree(remove_internal(K, getLeft(T)),
 
                                            getValue(T), getRight(T));
 
    } else {
 
      return balanceTree(getLeft(T), getValue(T),
 
                         remove_internal(K, getRight(T)));
 
    }
 
  }
 
 
 
  TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
 
    if (isEmpty(L))
 
      return R;
 
    if (isEmpty(R))
 
      return L;
 
    TreeTy* OldNode;
 
    TreeTy* newRight = removeMinBinding(R,OldNode);
 
    return balanceTree(L, getValue(OldNode), newRight);
 
  }
 
 
 
  TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
 
    assert(!isEmpty(T));
 
    if (isEmpty(getLeft(T))) {
 
      Noderemoved = T;
 
      return getRight(T);
 
    }
 
    return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
 
                       getValue(T), getRight(T));
 
  }
 
 
 
  /// markImmutable - Clears the mutable bits of a root and all of its
 
  ///  descendants.
 
  void markImmutable(TreeTy* T) {
 
    if (!T || !T->isMutable())
 
      return;
 
    T->markImmutable();
 
    markImmutable(getLeft(T));
 
    markImmutable(getRight(T));
 
  }
 
 
 
public:
 
  TreeTy *getCanonicalTree(TreeTy *TNew) {
 
    if (!TNew)
 
      return nullptr;
 
 
 
    if (TNew->IsCanonicalized)
 
      return TNew;
 
 
 
    // Search the hashtable for another tree with the same digest, and
 
    // if find a collision compare those trees by their contents.
 
    unsigned digest = TNew->computeDigest();
 
    TreeTy *&entry = Cache[maskCacheIndex(digest)];
 
    do {
 
      if (!entry)
 
        break;
 
      for (TreeTy *T = entry ; T != nullptr; T = T->next) {
 
        // Compare the Contents('T') with Contents('TNew')
 
        typename TreeTy::iterator TI = T->begin(), TE = T->end();
 
        if (!compareTreeWithSection(TNew, TI, TE))
 
          continue;
 
        if (TI != TE)
 
          continue; // T has more contents than TNew.
 
        // Trees did match!  Return 'T'.
 
        if (TNew->refCount == 0)
 
          TNew->destroy();
 
        return T;
 
      }
 
      entry->prev = TNew;
 
      TNew->next = entry;
 
    }
 
    while (false);
 
 
 
    entry = TNew;
 
    TNew->IsCanonicalized = true;
 
    return TNew;
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Immutable AVL-Tree Iterators.
 
//===----------------------------------------------------------------------===//
 
 
 
template <typename ImutInfo> class ImutAVLTreeGenericIterator {
 
  SmallVector<uintptr_t,20> stack;
 
 
 
public:
 
  using iterator_category = std::bidirectional_iterator_tag;
 
  using value_type = ImutAVLTree<ImutInfo>;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
 
 
  enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
 
                   Flags=0x3 };
 
 
 
  using TreeTy = ImutAVLTree<ImutInfo>;
 
 
 
  ImutAVLTreeGenericIterator() = default;
 
  ImutAVLTreeGenericIterator(const TreeTy *Root) {
 
    if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
 
  }
 
 
 
  TreeTy &operator*() const {
 
    assert(!stack.empty());
 
    return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
 
  }
 
  TreeTy *operator->() const { return &*this; }
 
 
 
  uintptr_t getVisitState() const {
 
    assert(!stack.empty());
 
    return stack.back() & Flags;
 
  }
 
 
 
  bool atEnd() const { return stack.empty(); }
 
 
 
  bool atBeginning() const {
 
    return stack.size() == 1 && getVisitState() == VisitedNone;
 
  }
 
 
 
  void skipToParent() {
 
    assert(!stack.empty());
 
    stack.pop_back();
 
    if (stack.empty())
 
      return;
 
    switch (getVisitState()) {
 
      case VisitedNone:
 
        stack.back() |= VisitedLeft;
 
        break;
 
      case VisitedLeft:
 
        stack.back() |= VisitedRight;
 
        break;
 
      default:
 
        llvm_unreachable("Unreachable.");
 
    }
 
  }
 
 
 
  bool operator==(const ImutAVLTreeGenericIterator &x) const {
 
    return stack == x.stack;
 
  }
 
 
 
  bool operator!=(const ImutAVLTreeGenericIterator &x) const {
 
    return !(*this == x);
 
  }
 
 
 
  ImutAVLTreeGenericIterator &operator++() {
 
    assert(!stack.empty());
 
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 
    assert(Current);
 
    switch (getVisitState()) {
 
      case VisitedNone:
 
        if (TreeTy* L = Current->getLeft())
 
          stack.push_back(reinterpret_cast<uintptr_t>(L));
 
        else
 
          stack.back() |= VisitedLeft;
 
        break;
 
      case VisitedLeft:
 
        if (TreeTy* R = Current->getRight())
 
          stack.push_back(reinterpret_cast<uintptr_t>(R));
 
        else
 
          stack.back() |= VisitedRight;
 
        break;
 
      case VisitedRight:
 
        skipToParent();
 
        break;
 
      default:
 
        llvm_unreachable("Unreachable.");
 
    }
 
    return *this;
 
  }
 
 
 
  ImutAVLTreeGenericIterator &operator--() {
 
    assert(!stack.empty());
 
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
 
    assert(Current);
 
    switch (getVisitState()) {
 
      case VisitedNone:
 
        stack.pop_back();
 
        break;
 
      case VisitedLeft:
 
        stack.back() &= ~Flags; // Set state to "VisitedNone."
 
        if (TreeTy* L = Current->getLeft())
 
          stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
 
        break;
 
      case VisitedRight:
 
        stack.back() &= ~Flags;
 
        stack.back() |= VisitedLeft;
 
        if (TreeTy* R = Current->getRight())
 
          stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
 
        break;
 
      default:
 
        llvm_unreachable("Unreachable.");
 
    }
 
    return *this;
 
  }
 
};
 
 
 
template <typename ImutInfo> class ImutAVLTreeInOrderIterator {
 
  using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>;
 
 
 
  InternalIteratorTy InternalItr;
 
 
 
public:
 
  using iterator_category = std::bidirectional_iterator_tag;
 
  using value_type = ImutAVLTree<ImutInfo>;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
 
 
  using TreeTy = ImutAVLTree<ImutInfo>;
 
 
 
  ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
 
    if (Root)
 
      ++*this; // Advance to first element.
 
  }
 
 
 
  ImutAVLTreeInOrderIterator() : InternalItr() {}
 
 
 
  bool operator==(const ImutAVLTreeInOrderIterator &x) const {
 
    return InternalItr == x.InternalItr;
 
  }
 
 
 
  bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
 
    return !(*this == x);
 
  }
 
 
 
  TreeTy &operator*() const { return *InternalItr; }
 
  TreeTy *operator->() const { return &*InternalItr; }
 
 
 
  ImutAVLTreeInOrderIterator &operator++() {
 
    do ++InternalItr;
 
    while (!InternalItr.atEnd() &&
 
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
 
 
 
    return *this;
 
  }
 
 
 
  ImutAVLTreeInOrderIterator &operator--() {
 
    do --InternalItr;
 
    while (!InternalItr.atBeginning() &&
 
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
 
 
 
    return *this;
 
  }
 
 
 
  void skipSubTree() {
 
    InternalItr.skipToParent();
 
 
 
    while (!InternalItr.atEnd() &&
 
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
 
      ++InternalItr;
 
  }
 
};
 
 
 
/// Generic iterator that wraps a T::TreeTy::iterator and exposes
 
/// iterator::getValue() on dereference.
 
template <typename T>
 
struct ImutAVLValueIterator
 
    : iterator_adaptor_base<
 
          ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
 
          typename std::iterator_traits<
 
              typename T::TreeTy::iterator>::iterator_category,
 
          const typename T::value_type> {
 
  ImutAVLValueIterator() = default;
 
  explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
 
      : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
 
 
 
  typename ImutAVLValueIterator::reference operator*() const {
 
    return this->I->getValue();
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Trait classes for Profile information.
 
//===----------------------------------------------------------------------===//
 
 
 
/// Generic profile template.  The default behavior is to invoke the
 
/// profile method of an object.  Specializations for primitive integers
 
/// and generic handling of pointers is done below.
 
template <typename T>
 
struct ImutProfileInfo {
 
  using value_type = const T;
 
  using value_type_ref = const T&;
 
 
 
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
 
    FoldingSetTrait<T>::Profile(X,ID);
 
  }
 
};
 
 
 
/// Profile traits for integers.
 
template <typename T>
 
struct ImutProfileInteger {
 
  using value_type = const T;
 
  using value_type_ref = const T&;
 
 
 
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
 
    ID.AddInteger(X);
 
  }
 
};
 
 
 
#define PROFILE_INTEGER_INFO(X)\
 
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
 
 
 
PROFILE_INTEGER_INFO(char)
 
PROFILE_INTEGER_INFO(unsigned char)
 
PROFILE_INTEGER_INFO(short)
 
PROFILE_INTEGER_INFO(unsigned short)
 
PROFILE_INTEGER_INFO(unsigned)
 
PROFILE_INTEGER_INFO(signed)
 
PROFILE_INTEGER_INFO(long)
 
PROFILE_INTEGER_INFO(unsigned long)
 
PROFILE_INTEGER_INFO(long long)
 
PROFILE_INTEGER_INFO(unsigned long long)
 
 
 
#undef PROFILE_INTEGER_INFO
 
 
 
/// Profile traits for booleans.
 
template <>
 
struct ImutProfileInfo<bool> {
 
  using value_type = const bool;
 
  using value_type_ref = const bool&;
 
 
 
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
 
    ID.AddBoolean(X);
 
  }
 
};
 
 
 
/// Generic profile trait for pointer types.  We treat pointers as
 
/// references to unique objects.
 
template <typename T>
 
struct ImutProfileInfo<T*> {
 
  using value_type = const T*;
 
  using value_type_ref = value_type;
 
 
 
  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
 
    ID.AddPointer(X);
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Trait classes that contain element comparison operators and type
 
//  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
 
//  inherit from the profile traits (ImutProfileInfo) to include operations
 
//  for element profiling.
 
//===----------------------------------------------------------------------===//
 
 
 
/// ImutContainerInfo - Generic definition of comparison operations for
 
///   elements of immutable containers that defaults to using
 
///   std::equal_to<> and std::less<> to perform comparison of elements.
 
template <typename T>
 
struct ImutContainerInfo : public ImutProfileInfo<T> {
 
  using value_type = typename ImutProfileInfo<T>::value_type;
 
  using value_type_ref = typename ImutProfileInfo<T>::value_type_ref;
 
  using key_type = value_type;
 
  using key_type_ref = value_type_ref;
 
  using data_type = bool;
 
  using data_type_ref = bool;
 
 
 
  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
 
  static data_type_ref DataOfValue(value_type_ref) { return true; }
 
 
 
  static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
 
    return std::equal_to<key_type>()(LHS,RHS);
 
  }
 
 
 
  static bool isLess(key_type_ref LHS, key_type_ref RHS) {
 
    return std::less<key_type>()(LHS,RHS);
 
  }
 
 
 
  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
 
};
 
 
 
/// ImutContainerInfo - Specialization for pointer values to treat pointers
 
///  as references to unique objects.  Pointers are thus compared by
 
///  their addresses.
 
template <typename T>
 
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
 
  using value_type = typename ImutProfileInfo<T*>::value_type;
 
  using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref;
 
  using key_type = value_type;
 
  using key_type_ref = value_type_ref;
 
  using data_type = bool;
 
  using data_type_ref = bool;
 
 
 
  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
 
  static data_type_ref DataOfValue(value_type_ref) { return true; }
 
 
 
  static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
 
 
 
  static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
 
 
 
  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Immutable Set
 
//===----------------------------------------------------------------------===//
 
 
 
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
 
class ImmutableSet {
 
public:
 
  using value_type = typename ValInfo::value_type;
 
  using value_type_ref = typename ValInfo::value_type_ref;
 
  using TreeTy = ImutAVLTree<ValInfo>;
 
 
 
private:
 
  IntrusiveRefCntPtr<TreeTy> Root;
 
 
 
public:
 
  /// Constructs a set from a pointer to a tree root.  In general one
 
  /// should use a Factory object to create sets instead of directly
 
  /// invoking the constructor, but there are cases where make this
 
  /// constructor public is useful.
 
  explicit ImmutableSet(TreeTy *R) : Root(R) {}
 
 
 
  class Factory {
 
    typename TreeTy::Factory F;
 
    const bool Canonicalize;
 
 
 
  public:
 
    Factory(bool canonicalize = true)
 
      : Canonicalize(canonicalize) {}
 
 
 
    Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
 
      : F(Alloc), Canonicalize(canonicalize) {}
 
 
 
    Factory(const Factory& RHS) = delete;
 
    void operator=(const Factory& RHS) = delete;
 
 
 
    /// getEmptySet - Returns an immutable set that contains no elements.
 
    ImmutableSet getEmptySet() {
 
      return ImmutableSet(F.getEmptyTree());
 
    }
 
 
 
    /// add - Creates a new immutable set that contains all of the values
 
    ///  of the original set with the addition of the specified value.  If
 
    ///  the original set already included the value, then the original set is
 
    ///  returned and no memory is allocated.  The time and space complexity
 
    ///  of this operation is logarithmic in the size of the original set.
 
    ///  The memory allocated to represent the set is released when the
 
    ///  factory object that created the set is destroyed.
 
    [[nodiscard]] ImmutableSet add(ImmutableSet Old, value_type_ref V) {
 
      TreeTy *NewT = F.add(Old.Root.get(), V);
 
      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
 
    }
 
 
 
    /// remove - Creates a new immutable set that contains all of the values
 
    ///  of the original set with the exception of the specified value.  If
 
    ///  the original set did not contain the value, the original set is
 
    ///  returned and no memory is allocated.  The time and space complexity
 
    ///  of this operation is logarithmic in the size of the original set.
 
    ///  The memory allocated to represent the set is released when the
 
    ///  factory object that created the set is destroyed.
 
    [[nodiscard]] ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
 
      TreeTy *NewT = F.remove(Old.Root.get(), V);
 
      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
 
    }
 
 
 
    BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
 
 
 
    typename TreeTy::Factory *getTreeFactory() const {
 
      return const_cast<typename TreeTy::Factory *>(&F);
 
    }
 
  };
 
 
 
  friend class Factory;
 
 
 
  /// Returns true if the set contains the specified value.
 
  bool contains(value_type_ref V) const {
 
    return Root ? Root->contains(V) : false;
 
  }
 
 
 
  bool operator==(const ImmutableSet &RHS) const {
 
    return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root;
 
  }
 
 
 
  bool operator!=(const ImmutableSet &RHS) const {
 
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get())
 
                            : Root != RHS.Root;
 
  }
 
 
 
  TreeTy *getRoot() {
 
    if (Root) { Root->retain(); }
 
    return Root.get();
 
  }
 
 
 
  TreeTy *getRootWithoutRetain() const { return Root.get(); }
 
 
 
  /// isEmpty - Return true if the set contains no elements.
 
  bool isEmpty() const { return !Root; }
 
 
 
  /// isSingleton - Return true if the set contains exactly one element.
 
  ///   This method runs in constant time.
 
  bool isSingleton() const { return getHeight() == 1; }
 
 
 
  //===--------------------------------------------------===//
 
  // Iterators.
 
  //===--------------------------------------------------===//
 
 
 
  using iterator = ImutAVLValueIterator<ImmutableSet>;
 
 
 
  iterator begin() const { return iterator(Root.get()); }
 
  iterator end() const { return iterator(); }
 
 
 
  //===--------------------------------------------------===//
 
  // Utility methods.
 
  //===--------------------------------------------------===//
 
 
 
  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
 
 
 
  static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
 
    ID.AddPointer(S.Root.get());
 
  }
 
 
 
  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
 
 
 
  //===--------------------------------------------------===//
 
  // For testing.
 
  //===--------------------------------------------------===//
 
 
 
  void validateTree() const { if (Root) Root->validateTree(); }
 
};
 
 
 
// NOTE: This may some day replace the current ImmutableSet.
 
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
 
class ImmutableSetRef {
 
public:
 
  using value_type = typename ValInfo::value_type;
 
  using value_type_ref = typename ValInfo::value_type_ref;
 
  using TreeTy = ImutAVLTree<ValInfo>;
 
  using FactoryTy = typename TreeTy::Factory;
 
 
 
private:
 
  IntrusiveRefCntPtr<TreeTy> Root;
 
  FactoryTy *Factory;
 
 
 
public:
 
  /// Constructs a set from a pointer to a tree root.  In general one
 
  /// should use a Factory object to create sets instead of directly
 
  /// invoking the constructor, but there are cases where make this
 
  /// constructor public is useful.
 
  ImmutableSetRef(TreeTy *R, FactoryTy *F) : Root(R), Factory(F) {}
 
 
 
  static ImmutableSetRef getEmptySet(FactoryTy *F) {
 
    return ImmutableSetRef(0, F);
 
  }
 
 
 
  ImmutableSetRef add(value_type_ref V) {
 
    return ImmutableSetRef(Factory->add(Root.get(), V), Factory);
 
  }
 
 
 
  ImmutableSetRef remove(value_type_ref V) {
 
    return ImmutableSetRef(Factory->remove(Root.get(), V), Factory);
 
  }
 
 
 
  /// Returns true if the set contains the specified value.
 
  bool contains(value_type_ref V) const {
 
    return Root ? Root->contains(V) : false;
 
  }
 
 
 
  ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
 
    return ImmutableSet<ValT>(
 
        canonicalize ? Factory->getCanonicalTree(Root.get()) : Root.get());
 
  }
 
 
 
  TreeTy *getRootWithoutRetain() const { return Root.get(); }
 
 
 
  bool operator==(const ImmutableSetRef &RHS) const {
 
    return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root;
 
  }
 
 
 
  bool operator!=(const ImmutableSetRef &RHS) const {
 
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get())
 
                            : Root != RHS.Root;
 
  }
 
 
 
  /// isEmpty - Return true if the set contains no elements.
 
  bool isEmpty() const { return !Root; }
 
 
 
  /// isSingleton - Return true if the set contains exactly one element.
 
  ///   This method runs in constant time.
 
  bool isSingleton() const { return getHeight() == 1; }
 
 
 
  //===--------------------------------------------------===//
 
  // Iterators.
 
  //===--------------------------------------------------===//
 
 
 
  using iterator = ImutAVLValueIterator<ImmutableSetRef>;
 
 
 
  iterator begin() const { return iterator(Root.get()); }
 
  iterator end() const { return iterator(); }
 
 
 
  //===--------------------------------------------------===//
 
  // Utility methods.
 
  //===--------------------------------------------------===//
 
 
 
  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
 
 
 
  static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
 
    ID.AddPointer(S.Root.get());
 
  }
 
 
 
  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
 
 
 
  //===--------------------------------------------------===//
 
  // For testing.
 
  //===--------------------------------------------------===//
 
 
 
  void validateTree() const { if (Root) Root->validateTree(); }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_IMMUTABLESET_H