//===- GenericCycleInfo.h - Info for Cycles in any IR ------*- C++ -*------===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// \brief Find all cycles in a control-flow graph, including irreducible loops.
 
///
 
/// See docs/CycleTerminology.rst for a formal definition of cycles.
 
///
 
/// Briefly:
 
/// - A cycle is a generalization of a loop which can represent
 
///   irreducible control flow.
 
/// - Cycles identified in a program are implementation defined,
 
///   depending on the DFS traversal chosen.
 
/// - Cycles are well-nested, and form a forest with a parent-child
 
///   relationship.
 
/// - In any choice of DFS, every natural loop L is represented by a
 
///   unique cycle C which is a superset of L.
 
/// - In the absence of irreducible control flow, the cycles are
 
///   exactly the natural loops in the program.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_GENERICCYCLEINFO_H
 
#define LLVM_ADT_GENERICCYCLEINFO_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/GenericSSAContext.h"
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Support/Debug.h"
 
#include "llvm/Support/Printable.h"
 
#include "llvm/Support/raw_ostream.h"
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
template <typename ContextT> class GenericCycleInfo;
 
template <typename ContextT> class GenericCycleInfoCompute;
 
 
 
/// A possibly irreducible generalization of a \ref Loop.
 
template <typename ContextT> class GenericCycle {
 
public:
 
  using BlockT = typename ContextT::BlockT;
 
  using FunctionT = typename ContextT::FunctionT;
 
  template <typename> friend class GenericCycleInfo;
 
  template <typename> friend class GenericCycleInfoCompute;
 
 
 
private:
 
  /// The parent cycle. Is null for the root "cycle". Top-level cycles point
 
  /// at the root.
 
  GenericCycle *ParentCycle = nullptr;
 
 
 
  /// The entry block(s) of the cycle. The header is the only entry if
 
  /// this is a loop. Is empty for the root "cycle", to avoid
 
  /// unnecessary memory use.
 
  SmallVector<BlockT *, 1> Entries;
 
 
 
  /// Child cycles, if any.
 
  std::vector<std::unique_ptr<GenericCycle>> Children;
 
 
 
  /// Basic blocks that are contained in the cycle, including entry blocks,
 
  /// and including blocks that are part of a child cycle.
 
  std::vector<BlockT *> Blocks;
 
 
 
  /// Depth of the cycle in the tree. The root "cycle" is at depth 0.
 
  ///
 
  /// \note Depths are not necessarily contiguous. However, child loops always
 
  ///       have strictly greater depth than their parents, and sibling loops
 
  ///       always have the same depth.
 
  unsigned Depth = 0;
 
 
 
  void clear() {
 
    Entries.clear();
 
    Children.clear();
 
    Blocks.clear();
 
    Depth = 0;
 
    ParentCycle = nullptr;
 
  }
 
 
 
  void appendEntry(BlockT *Block) { Entries.push_back(Block); }
 
  void appendBlock(BlockT *Block) { Blocks.push_back(Block); }
 
 
 
  GenericCycle(const GenericCycle &) = delete;
 
  GenericCycle &operator=(const GenericCycle &) = delete;
 
  GenericCycle(GenericCycle &&Rhs) = delete;
 
  GenericCycle &operator=(GenericCycle &&Rhs) = delete;
 
 
 
public:
 
  GenericCycle() = default;
 
 
 
  /// \brief Whether the cycle is a natural loop.
 
  bool isReducible() const { return Entries.size() == 1; }
 
 
 
  BlockT *getHeader() const { return Entries[0]; }
 
 
 
  const SmallVectorImpl<BlockT *> & getEntries() const {
 
    return Entries;
 
  }
 
 
 
  /// \brief Return whether \p Block is an entry block of the cycle.
 
  bool isEntry(const BlockT *Block) const {
 
    return is_contained(Entries, Block);
 
  }
 
 
 
  /// \brief Return whether \p Block is contained in the cycle.
 
  bool contains(const BlockT *Block) const {
 
    return is_contained(Blocks, Block);
 
  }
 
 
 
  /// \brief Returns true iff this cycle contains \p C.
 
  ///
 
  /// Note: Non-strict containment check, i.e. returns true if C is the
 
  /// same cycle.
 
  bool contains(const GenericCycle *C) const;
 
 
 
  const GenericCycle *getParentCycle() const { return ParentCycle; }
 
  GenericCycle *getParentCycle() { return ParentCycle; }
 
  unsigned getDepth() const { return Depth; }
 
 
 
  /// Return all of the successor blocks of this cycle.
 
  ///
 
  /// These are the blocks _outside of the current cycle_ which are
 
  /// branched to.
 
  void getExitBlocks(SmallVectorImpl<BlockT *> &TmpStorage) const;
 
 
 
  /// Return the preheader block for this cycle. Pre-header is well-defined for
 
  /// reducible cycle in docs/LoopTerminology.rst as: the only one entering
 
  /// block and its only edge is to the entry block. Return null for irreducible
 
  /// cycles.
 
  BlockT *getCyclePreheader() const;
 
 
 
  /// If the cycle has exactly one entry with exactly one predecessor, return
 
  /// it, otherwise return nullptr.
 
  BlockT *getCyclePredecessor() const;
 
 
 
  /// Iteration over child cycles.
 
  //@{
 
  using const_child_iterator_base =
 
      typename std::vector<std::unique_ptr<GenericCycle>>::const_iterator;
 
  struct const_child_iterator
 
      : iterator_adaptor_base<const_child_iterator, const_child_iterator_base> {
 
    using Base =
 
        iterator_adaptor_base<const_child_iterator, const_child_iterator_base>;
 
 
 
    const_child_iterator() = default;
 
    explicit const_child_iterator(const_child_iterator_base I) : Base(I) {}
 
 
 
    const const_child_iterator_base &wrapped() { return Base::wrapped(); }
 
    GenericCycle *operator*() const { return Base::I->get(); }
 
  };
 
 
 
  const_child_iterator child_begin() const {
 
    return const_child_iterator{Children.begin()};
 
  }
 
  const_child_iterator child_end() const {
 
    return const_child_iterator{Children.end()};
 
  }
 
  size_t getNumChildren() const { return Children.size(); }
 
  iterator_range<const_child_iterator> children() const {
 
    return llvm::make_range(const_child_iterator{Children.begin()},
 
                            const_child_iterator{Children.end()});
 
  }
 
  //@}
 
 
 
  /// Iteration over blocks in the cycle (including entry blocks).
 
  //@{
 
  using const_block_iterator = typename std::vector<BlockT *>::const_iterator;
 
 
 
  const_block_iterator block_begin() const {
 
    return const_block_iterator{Blocks.begin()};
 
  }
 
  const_block_iterator block_end() const {
 
    return const_block_iterator{Blocks.end()};
 
  }
 
  size_t getNumBlocks() const { return Blocks.size(); }
 
  iterator_range<const_block_iterator> blocks() const {
 
    return llvm::make_range(block_begin(), block_end());
 
  }
 
  //@}
 
 
 
  /// Iteration over entry blocks.
 
  //@{
 
  using const_entry_iterator =
 
      typename SmallVectorImpl<BlockT *>::const_iterator;
 
 
 
  size_t getNumEntries() const { return Entries.size(); }
 
  iterator_range<const_entry_iterator> entries() const {
 
    return llvm::make_range(Entries.begin(), Entries.end());
 
  }
 
  //@}
 
 
 
  Printable printEntries(const ContextT &Ctx) const {
 
    return Printable([this, &Ctx](raw_ostream &Out) {
 
      bool First = true;
 
      for (auto *Entry : Entries) {
 
        if (!First)
 
          Out << ' ';
 
        First = false;
 
        Out << Ctx.print(Entry);
 
      }
 
    });
 
  }
 
 
 
  Printable print(const ContextT &Ctx) const {
 
    return Printable([this, &Ctx](raw_ostream &Out) {
 
      Out << "depth=" << Depth << ": entries(" << printEntries(Ctx) << ')';
 
 
 
      for (auto *Block : Blocks) {
 
        if (isEntry(Block))
 
          continue;
 
 
 
        Out << ' ' << Ctx.print(Block);
 
      }
 
    });
 
  }
 
};
 
 
 
/// \brief Cycle information for a function.
 
template <typename ContextT> class GenericCycleInfo {
 
public:
 
  using BlockT = typename ContextT::BlockT;
 
  using CycleT = GenericCycle<ContextT>;
 
  using FunctionT = typename ContextT::FunctionT;
 
  template <typename> friend class GenericCycle;
 
  template <typename> friend class GenericCycleInfoCompute;
 
 
 
private:
 
  ContextT Context;
 
 
 
  /// Map basic blocks to their inner-most containing cycle.
 
  DenseMap<BlockT *, CycleT *> BlockMap;
 
 
 
  /// Map basic blocks to their top level containing cycle.
 
  DenseMap<BlockT *, CycleT *> BlockMapTopLevel;
 
 
 
  /// Top-level cycles discovered by any DFS.
 
  ///
 
  /// Note: The implementation treats the nullptr as the parent of
 
  /// every top-level cycle. See \ref contains for an example.
 
  std::vector<std::unique_ptr<CycleT>> TopLevelCycles;
 
 
 
  /// Move \p Child to \p NewParent by manipulating Children vectors.
 
  ///
 
  /// Note: This is an incomplete operation that does not update the depth of
 
  /// the subtree.
 
  void moveTopLevelCycleToNewParent(CycleT *NewParent, CycleT *Child);
 
 
 
public:
 
  GenericCycleInfo() = default;
 
  GenericCycleInfo(GenericCycleInfo &&) = default;
 
  GenericCycleInfo &operator=(GenericCycleInfo &&) = default;
 
 
 
  void clear();
 
  void compute(FunctionT &F);
 
 
 
  FunctionT *getFunction() const { return Context.getFunction(); }
 
  const ContextT &getSSAContext() const { return Context; }
 
 
 
  CycleT *getCycle(const BlockT *Block) const;
 
  unsigned getCycleDepth(const BlockT *Block) const;
 
  CycleT *getTopLevelParentCycle(BlockT *Block);
 
 
 
  /// Methods for debug and self-test.
 
  //@{
 
#ifndef NDEBUG
 
  bool validateTree() const;
 
#endif
 
  void print(raw_ostream &Out) const;
 
  void dump() const { print(dbgs()); }
 
  //@}
 
 
 
  /// Iteration over top-level cycles.
 
  //@{
 
  using const_toplevel_iterator_base =
 
      typename std::vector<std::unique_ptr<CycleT>>::const_iterator;
 
  struct const_toplevel_iterator
 
      : iterator_adaptor_base<const_toplevel_iterator,
 
                              const_toplevel_iterator_base> {
 
    using Base = iterator_adaptor_base<const_toplevel_iterator,
 
                                       const_toplevel_iterator_base>;
 
 
 
    const_toplevel_iterator() = default;
 
    explicit const_toplevel_iterator(const_toplevel_iterator_base I)
 
        : Base(I) {}
 
 
 
    const const_toplevel_iterator_base &wrapped() { return Base::wrapped(); }
 
    CycleT *operator*() const { return Base::I->get(); }
 
  };
 
 
 
  const_toplevel_iterator toplevel_begin() const {
 
    return const_toplevel_iterator{TopLevelCycles.begin()};
 
  }
 
  const_toplevel_iterator toplevel_end() const {
 
    return const_toplevel_iterator{TopLevelCycles.end()};
 
  }
 
 
 
  iterator_range<const_toplevel_iterator> toplevel_cycles() const {
 
    return llvm::make_range(const_toplevel_iterator{TopLevelCycles.begin()},
 
                            const_toplevel_iterator{TopLevelCycles.end()});
 
  }
 
  //@}
 
};
 
 
 
/// \brief GraphTraits for iterating over a sub-tree of the CycleT tree.
 
template <typename CycleRefT, typename ChildIteratorT> struct CycleGraphTraits {
 
  using NodeRef = CycleRefT;
 
 
 
  using nodes_iterator = ChildIteratorT;
 
  using ChildIteratorType = nodes_iterator;
 
 
 
  static NodeRef getEntryNode(NodeRef Graph) { return Graph; }
 
 
 
  static ChildIteratorType child_begin(NodeRef Ref) {
 
    return Ref->child_begin();
 
  }
 
  static ChildIteratorType child_end(NodeRef Ref) { return Ref->child_end(); }
 
 
 
  // Not implemented:
 
  // static nodes_iterator nodes_begin(GraphType *G)
 
  // static nodes_iterator nodes_end  (GraphType *G)
 
  //    nodes_iterator/begin/end - Allow iteration over all nodes in the graph
 
 
 
  // typedef EdgeRef           - Type of Edge token in the graph, which should
 
  //                             be cheap to copy.
 
  // typedef ChildEdgeIteratorType - Type used to iterate over children edges in
 
  //                             graph, dereference to a EdgeRef.
 
 
 
  // static ChildEdgeIteratorType child_edge_begin(NodeRef)
 
  // static ChildEdgeIteratorType child_edge_end(NodeRef)
 
  //     Return iterators that point to the beginning and ending of the
 
  //     edge list for the given callgraph node.
 
  //
 
  // static NodeRef edge_dest(EdgeRef)
 
  //     Return the destination node of an edge.
 
  // static unsigned       size       (GraphType *G)
 
  //    Return total number of nodes in the graph
 
};
 
 
 
template <typename BlockT>
 
struct GraphTraits<const GenericCycle<BlockT> *>
 
    : CycleGraphTraits<const GenericCycle<BlockT> *,
 
                       typename GenericCycle<BlockT>::const_child_iterator> {};
 
template <typename BlockT>
 
struct GraphTraits<GenericCycle<BlockT> *>
 
    : CycleGraphTraits<GenericCycle<BlockT> *,
 
                       typename GenericCycle<BlockT>::const_child_iterator> {};
 
 
 
} // namespace llvm
 
 
 
#endif // LLVM_ADT_GENERICCYCLEINFO_H