//===- GenericCycleImpl.h -------------------------------------*- C++ -*---===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This template implementation resides in a separate file so that it
 
/// does not get injected into every .cpp file that includes the
 
/// generic header.
 
///
 
/// DO NOT INCLUDE THIS FILE WHEN MERELY USING CYCLEINFO.
 
///
 
/// This file should only be included by files that implement a
 
/// specialization of the relevant templates. Currently these are:
 
/// - CycleAnalysis.cpp
 
/// - MachineCycleAnalysis.cpp
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_GENERICCYCLEIMPL_H
 
#define LLVM_ADT_GENERICCYCLEIMPL_H
 
 
 
#include "llvm/ADT/DenseSet.h"
 
#include "llvm/ADT/DepthFirstIterator.h"
 
#include "llvm/ADT/GenericCycleInfo.h"
 
 
 
#define DEBUG_TYPE "generic-cycle-impl"
 
 
 
namespace llvm {
 
 
 
template <typename ContextT>
 
bool GenericCycle<ContextT>::contains(const GenericCycle *C) const {
 
  if (!C)
 
    return false;
 
 
 
  if (Depth > C->Depth)
 
    return false;
 
  while (Depth < C->Depth)
 
    C = C->ParentCycle;
 
  return this == C;
 
}
 
 
 
template <typename ContextT>
 
void GenericCycle<ContextT>::getExitBlocks(
 
    SmallVectorImpl<BlockT *> &TmpStorage) const {
 
  TmpStorage.clear();
 
 
 
  size_t NumExitBlocks = 0;
 
  for (BlockT *Block : blocks()) {
 
    llvm::append_range(TmpStorage, successors(Block));
 
 
 
    for (size_t Idx = NumExitBlocks, End = TmpStorage.size(); Idx < End;
 
         ++Idx) {
 
      BlockT *Succ = TmpStorage[Idx];
 
      if (!contains(Succ)) {
 
        auto ExitEndIt = TmpStorage.begin() + NumExitBlocks;
 
        if (std::find(TmpStorage.begin(), ExitEndIt, Succ) == ExitEndIt)
 
          TmpStorage[NumExitBlocks++] = Succ;
 
      }
 
    }
 
 
 
    TmpStorage.resize(NumExitBlocks);
 
  }
 
}
 
 
 
template <typename ContextT>
 
auto GenericCycle<ContextT>::getCyclePreheader() const -> BlockT * {
 
  BlockT *Predecessor = getCyclePredecessor();
 
  if (!Predecessor)
 
    return nullptr;
 
 
 
  assert(isReducible() && "Cycle Predecessor must be in a reducible cycle!");
 
 
 
  if (succ_size(Predecessor) != 1)
 
    return nullptr;
 
 
 
  // Make sure we are allowed to hoist instructions into the predecessor.
 
  if (!Predecessor->isLegalToHoistInto())
 
    return nullptr;
 
 
 
  return Predecessor;
 
}
 
 
 
template <typename ContextT>
 
auto GenericCycle<ContextT>::getCyclePredecessor() const -> BlockT * {
 
  if (!isReducible())
 
    return nullptr;
 
 
 
  BlockT *Out = nullptr;
 
 
 
  // Loop over the predecessors of the header node...
 
  BlockT *Header = getHeader();
 
  for (const auto Pred : predecessors(Header)) {
 
    if (!contains(Pred)) {
 
      if (Out && Out != Pred)
 
        return nullptr;
 
      Out = Pred;
 
    }
 
  }
 
 
 
  return Out;
 
}
 
 
 
/// \brief Helper class for computing cycle information.
 
template <typename ContextT> class GenericCycleInfoCompute {
 
  using BlockT = typename ContextT::BlockT;
 
  using CycleInfoT = GenericCycleInfo<ContextT>;
 
  using CycleT = typename CycleInfoT::CycleT;
 
 
 
  CycleInfoT &Info;
 
 
 
  struct DFSInfo {
 
    unsigned Start = 0; // DFS start; positive if block is found
 
    unsigned End = 0;   // DFS end
 
 
 
    DFSInfo() = default;
 
    explicit DFSInfo(unsigned Start) : Start(Start) {}
 
 
 
    /// Whether this node is an ancestor (or equal to) the node \p Other
 
    /// in the DFS tree.
 
    bool isAncestorOf(const DFSInfo &Other) const {
 
      return Start <= Other.Start && Other.End <= End;
 
    }
 
  };
 
 
 
  DenseMap<BlockT *, DFSInfo> BlockDFSInfo;
 
  SmallVector<BlockT *, 8> BlockPreorder;
 
 
 
  GenericCycleInfoCompute(const GenericCycleInfoCompute &) = delete;
 
  GenericCycleInfoCompute &operator=(const GenericCycleInfoCompute &) = delete;
 
 
 
public:
 
  GenericCycleInfoCompute(CycleInfoT &Info) : Info(Info) {}
 
 
 
  void run(BlockT *EntryBlock);
 
 
 
  static void updateDepth(CycleT *SubTree);
 
 
 
private:
 
  void dfs(BlockT *EntryBlock);
 
};
 
 
 
template <typename ContextT>
 
auto GenericCycleInfo<ContextT>::getTopLevelParentCycle(BlockT *Block)
 
    -> CycleT * {
 
  auto Cycle = BlockMapTopLevel.find(Block);
 
  if (Cycle != BlockMapTopLevel.end())
 
    return Cycle->second;
 
 
 
  auto MapIt = BlockMap.find(Block);
 
  if (MapIt == BlockMap.end())
 
    return nullptr;
 
 
 
  auto *C = MapIt->second;
 
  while (C->ParentCycle)
 
    C = C->ParentCycle;
 
  BlockMapTopLevel.try_emplace(Block, C);
 
  return C;
 
}
 
 
 
template <typename ContextT>
 
void GenericCycleInfo<ContextT>::moveTopLevelCycleToNewParent(CycleT *NewParent,
 
                                                              CycleT *Child) {
 
  assert((!Child->ParentCycle && !NewParent->ParentCycle) &&
 
         "NewParent and Child must be both top level cycle!\n");
 
  auto &CurrentContainer =
 
      Child->ParentCycle ? Child->ParentCycle->Children : TopLevelCycles;
 
  auto Pos = llvm::find_if(CurrentContainer, [=](const auto &Ptr) -> bool {
 
    return Child == Ptr.get();
 
  });
 
  assert(Pos != CurrentContainer.end());
 
  NewParent->Children.push_back(std::move(*Pos));
 
  *Pos = std::move(CurrentContainer.back());
 
  CurrentContainer.pop_back();
 
  Child->ParentCycle = NewParent;
 
 
 
  NewParent->Blocks.insert(NewParent->Blocks.end(), Child->block_begin(),
 
                           Child->block_end());
 
 
 
  for (auto &It : BlockMapTopLevel)
 
    if (It.second == Child)
 
      It.second = NewParent;
 
}
 
 
 
/// \brief Main function of the cycle info computations.
 
template <typename ContextT>
 
void GenericCycleInfoCompute<ContextT>::run(BlockT *EntryBlock) {
 
  LLVM_DEBUG(errs() << "Entry block: " << Info.Context.print(EntryBlock)
 
                    << "\n");
 
  dfs(EntryBlock);
 
 
 
  SmallVector<BlockT *, 8> Worklist;
 
 
 
  for (BlockT *HeaderCandidate : llvm::reverse(BlockPreorder)) {
 
    const DFSInfo CandidateInfo = BlockDFSInfo.lookup(HeaderCandidate);
 
 
 
    for (BlockT *Pred : predecessors(HeaderCandidate)) {
 
      const DFSInfo PredDFSInfo = BlockDFSInfo.lookup(Pred);
 
      if (CandidateInfo.isAncestorOf(PredDFSInfo))
 
        Worklist.push_back(Pred);
 
    }
 
    if (Worklist.empty()) {
 
      continue;
 
    }
 
 
 
    // Found a cycle with the candidate as its header.
 
    LLVM_DEBUG(errs() << "Found cycle for header: "
 
                      << Info.Context.print(HeaderCandidate) << "\n");
 
    std::unique_ptr<CycleT> NewCycle = std::make_unique<CycleT>();
 
    NewCycle->appendEntry(HeaderCandidate);
 
    NewCycle->appendBlock(HeaderCandidate);
 
    Info.BlockMap.try_emplace(HeaderCandidate, NewCycle.get());
 
 
 
    // Helper function to process (non-back-edge) predecessors of a discovered
 
    // block and either add them to the worklist or recognize that the given
 
    // block is an additional cycle entry.
 
    auto ProcessPredecessors = [&](BlockT *Block) {
 
      LLVM_DEBUG(errs() << "  block " << Info.Context.print(Block) << ": ");
 
 
 
      bool IsEntry = false;
 
      for (BlockT *Pred : predecessors(Block)) {
 
        const DFSInfo PredDFSInfo = BlockDFSInfo.lookup(Pred);
 
        if (CandidateInfo.isAncestorOf(PredDFSInfo)) {
 
          Worklist.push_back(Pred);
 
        } else {
 
          IsEntry = true;
 
        }
 
      }
 
      if (IsEntry) {
 
        assert(!NewCycle->isEntry(Block));
 
        LLVM_DEBUG(errs() << "append as entry\n");
 
        NewCycle->appendEntry(Block);
 
      } else {
 
        LLVM_DEBUG(errs() << "append as child\n");
 
      }
 
    };
 
 
 
    do {
 
      BlockT *Block = Worklist.pop_back_val();
 
      if (Block == HeaderCandidate)
 
        continue;
 
 
 
      // If the block has already been discovered by some cycle
 
      // (possibly by ourself), then the outermost cycle containing it
 
      // should become our child.
 
      if (auto *BlockParent = Info.getTopLevelParentCycle(Block)) {
 
        LLVM_DEBUG(errs() << "  block " << Info.Context.print(Block) << ": ");
 
 
 
        if (BlockParent != NewCycle.get()) {
 
          LLVM_DEBUG(errs()
 
                     << "discovered child cycle "
 
                     << Info.Context.print(BlockParent->getHeader()) << "\n");
 
          // Make BlockParent the child of NewCycle.
 
          Info.moveTopLevelCycleToNewParent(NewCycle.get(), BlockParent);
 
 
 
          for (auto *ChildEntry : BlockParent->entries())
 
            ProcessPredecessors(ChildEntry);
 
        } else {
 
          LLVM_DEBUG(errs()
 
                     << "known child cycle "
 
                     << Info.Context.print(BlockParent->getHeader()) << "\n");
 
        }
 
      } else {
 
        Info.BlockMap.try_emplace(Block, NewCycle.get());
 
        assert(!is_contained(NewCycle->Blocks, Block));
 
        NewCycle->Blocks.push_back(Block);
 
        ProcessPredecessors(Block);
 
        Info.BlockMapTopLevel.try_emplace(Block, NewCycle.get());
 
      }
 
    } while (!Worklist.empty());
 
 
 
    Info.TopLevelCycles.push_back(std::move(NewCycle));
 
  }
 
 
 
  // Fix top-level cycle links and compute cycle depths.
 
  for (auto *TLC : Info.toplevel_cycles()) {
 
    LLVM_DEBUG(errs() << "top-level cycle: "
 
                      << Info.Context.print(TLC->getHeader()) << "\n");
 
 
 
    TLC->ParentCycle = nullptr;
 
    updateDepth(TLC);
 
  }
 
}
 
 
 
/// \brief Recompute depth values of \p SubTree and all descendants.
 
template <typename ContextT>
 
void GenericCycleInfoCompute<ContextT>::updateDepth(CycleT *SubTree) {
 
  for (CycleT *Cycle : depth_first(SubTree))
 
    Cycle->Depth = Cycle->ParentCycle ? Cycle->ParentCycle->Depth + 1 : 1;
 
}
 
 
 
/// \brief Compute a DFS of basic blocks starting at the function entry.
 
///
 
/// Fills BlockDFSInfo with start/end counters and BlockPreorder.
 
template <typename ContextT>
 
void GenericCycleInfoCompute<ContextT>::dfs(BlockT *EntryBlock) {
 
  SmallVector<unsigned, 8> DFSTreeStack;
 
  SmallVector<BlockT *, 8> TraverseStack;
 
  unsigned Counter = 0;
 
  TraverseStack.emplace_back(EntryBlock);
 
 
 
  do {
 
    BlockT *Block = TraverseStack.back();
 
    LLVM_DEBUG(errs() << "DFS visiting block: " << Info.Context.print(Block)
 
                      << "\n");
 
    if (!BlockDFSInfo.count(Block)) {
 
      // We're visiting the block for the first time. Open its DFSInfo, add
 
      // successors to the traversal stack, and remember the traversal stack
 
      // depth at which the block was opened, so that we can correctly record
 
      // its end time.
 
      LLVM_DEBUG(errs() << "  first encountered at depth "
 
                        << TraverseStack.size() << "\n");
 
 
 
      DFSTreeStack.emplace_back(TraverseStack.size());
 
      llvm::append_range(TraverseStack, successors(Block));
 
 
 
      bool Added = BlockDFSInfo.try_emplace(Block, ++Counter).second;
 
      (void)Added;
 
      assert(Added);
 
      BlockPreorder.push_back(Block);
 
      LLVM_DEBUG(errs() << "  preorder number: " << Counter << "\n");
 
    } else {
 
      assert(!DFSTreeStack.empty());
 
      if (DFSTreeStack.back() == TraverseStack.size()) {
 
        LLVM_DEBUG(errs() << "  ended at " << Counter << "\n");
 
        BlockDFSInfo.find(Block)->second.End = Counter;
 
        DFSTreeStack.pop_back();
 
      } else {
 
        LLVM_DEBUG(errs() << "  already done\n");
 
      }
 
      TraverseStack.pop_back();
 
    }
 
  } while (!TraverseStack.empty());
 
  assert(DFSTreeStack.empty());
 
 
 
  LLVM_DEBUG(
 
    errs() << "Preorder:\n";
 
    for (int i = 0, e = BlockPreorder.size(); i != e; ++i) {
 
      errs() << "  " << Info.Context.print(BlockPreorder[i]) << ": " << i << "\n";
 
    }
 
  );
 
}
 
 
 
/// \brief Reset the object to its initial state.
 
template <typename ContextT> void GenericCycleInfo<ContextT>::clear() {
 
  TopLevelCycles.clear();
 
  BlockMap.clear();
 
  BlockMapTopLevel.clear();
 
}
 
 
 
/// \brief Compute the cycle info for a function.
 
template <typename ContextT>
 
void GenericCycleInfo<ContextT>::compute(FunctionT &F) {
 
  GenericCycleInfoCompute<ContextT> Compute(*this);
 
  Context.setFunction(F);
 
 
 
  LLVM_DEBUG(errs() << "Computing cycles for function: " << F.getName()
 
                    << "\n");
 
  Compute.run(ContextT::getEntryBlock(F));
 
 
 
  assert(validateTree());
 
}
 
 
 
/// \brief Find the innermost cycle containing a given block.
 
///
 
/// \returns the innermost cycle containing \p Block or nullptr if
 
///          it is not contained in any cycle.
 
template <typename ContextT>
 
auto GenericCycleInfo<ContextT>::getCycle(const BlockT *Block) const
 
    -> CycleT * {
 
  auto MapIt = BlockMap.find(Block);
 
  if (MapIt != BlockMap.end())
 
    return MapIt->second;
 
  return nullptr;
 
}
 
 
 
/// \brief get the depth for the cycle which containing a given block.
 
///
 
/// \returns the depth for the innermost cycle containing \p Block or 0 if it is
 
///          not contained in any cycle.
 
template <typename ContextT>
 
unsigned GenericCycleInfo<ContextT>::getCycleDepth(const BlockT *Block) const {
 
  CycleT *Cycle = getCycle(Block);
 
  if (!Cycle)
 
    return 0;
 
  return Cycle->getDepth();
 
}
 
 
 
#ifndef NDEBUG
 
/// \brief Validate the internal consistency of the cycle tree.
 
///
 
/// Note that this does \em not check that cycles are really cycles in the CFG,
 
/// or that the right set of cycles in the CFG were found.
 
template <typename ContextT>
 
bool GenericCycleInfo<ContextT>::validateTree() const {
 
  DenseSet<BlockT *> Blocks;
 
  DenseSet<BlockT *> Entries;
 
 
 
  auto reportError = [](const char *File, int Line, const char *Cond) {
 
    errs() << File << ':' << Line
 
           << ": GenericCycleInfo::validateTree: " << Cond << '\n';
 
  };
 
#define check(cond)                                                            \
 
  do {                                                                         \
 
    if (!(cond)) {                                                             \
 
      reportError(__FILE__, __LINE__, #cond);                                  \
 
      return false;                                                            \
 
    }                                                                          \
 
  } while (false)
 
 
 
  for (const auto *TLC : toplevel_cycles()) {
 
    for (const CycleT *Cycle : depth_first(TLC)) {
 
      if (Cycle->ParentCycle)
 
        check(is_contained(Cycle->ParentCycle->children(), Cycle));
 
 
 
      for (BlockT *Block : Cycle->Blocks) {
 
        auto MapIt = BlockMap.find(Block);
 
        check(MapIt != BlockMap.end());
 
        check(Cycle->contains(MapIt->second));
 
        check(Blocks.insert(Block).second); // duplicates in block list?
 
      }
 
      Blocks.clear();
 
 
 
      check(!Cycle->Entries.empty());
 
      for (BlockT *Entry : Cycle->Entries) {
 
        check(Entries.insert(Entry).second); // duplicate entry?
 
        check(is_contained(Cycle->Blocks, Entry));
 
      }
 
      Entries.clear();
 
 
 
      unsigned ChildDepth = 0;
 
      for (const CycleT *Child : Cycle->children()) {
 
        check(Child->Depth > Cycle->Depth);
 
        if (!ChildDepth) {
 
          ChildDepth = Child->Depth;
 
        } else {
 
          check(ChildDepth == Child->Depth);
 
        }
 
      }
 
    }
 
  }
 
 
 
  for (const auto &Entry : BlockMap) {
 
    BlockT *Block = Entry.first;
 
    for (const CycleT *Cycle = Entry.second; Cycle;
 
         Cycle = Cycle->ParentCycle) {
 
      check(is_contained(Cycle->Blocks, Block));
 
    }
 
  }
 
 
 
#undef check
 
 
 
  return true;
 
}
 
#endif
 
 
 
/// \brief Print the cycle info.
 
template <typename ContextT>
 
void GenericCycleInfo<ContextT>::print(raw_ostream &Out) const {
 
  for (const auto *TLC : toplevel_cycles()) {
 
    for (const CycleT *Cycle : depth_first(TLC)) {
 
      for (unsigned I = 0; I < Cycle->Depth; ++I)
 
        Out << "    ";
 
 
 
      Out << Cycle->print(Context) << '\n';
 
    }
 
  }
 
}
 
 
 
} // namespace llvm
 
 
 
#undef DEBUG_TYPE
 
 
 
#endif // LLVM_ADT_GENERICCYCLEIMPL_H