//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
/// This file provides a collection of function (or more generally, callable)
 
/// type erasure utilities supplementing those provided by the standard library
 
/// in `<function>`.
 
///
 
/// It provides `unique_function`, which works like `std::function` but supports
 
/// move-only callable objects and const-qualification.
 
///
 
/// Future plans:
 
/// - Add a `function` that provides ref-qualified support, which doesn't work
 
///   with `std::function`.
 
/// - Provide support for specifying multiple signatures to type erase callable
 
///   objects with an overload set, such as those produced by generic lambdas.
 
/// - Expand to include a copyable utility that directly replaces std::function
 
///   but brings the above improvements.
 
///
 
/// Note that LLVM's utilities are greatly simplified by not supporting
 
/// allocators.
 
///
 
/// If the standard library ever begins to provide comparable facilities we can
 
/// consider switching to those.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_FUNCTIONEXTRAS_H
 
#define LLVM_ADT_FUNCTIONEXTRAS_H
 
 
 
#include "llvm/ADT/PointerIntPair.h"
 
#include "llvm/ADT/PointerUnion.h"
 
#include "llvm/ADT/STLForwardCompat.h"
 
#include "llvm/Support/MemAlloc.h"
 
#include "llvm/Support/type_traits.h"
 
#include <cstring>
 
#include <memory>
 
#include <type_traits>
 
 
 
namespace llvm {
 
 
 
/// unique_function is a type-erasing functor similar to std::function.
 
///
 
/// It can hold move-only function objects, like lambdas capturing unique_ptrs.
 
/// Accordingly, it is movable but not copyable.
 
///
 
/// It supports const-qualification:
 
/// - unique_function<int() const> has a const operator().
 
///   It can only hold functions which themselves have a const operator().
 
/// - unique_function<int()> has a non-const operator().
 
///   It can hold functions with a non-const operator(), like mutable lambdas.
 
template <typename FunctionT> class unique_function;
 
 
 
namespace detail {
 
 
 
template <typename T>
 
using EnableIfTrivial =
 
    std::enable_if_t<llvm::is_trivially_move_constructible<T>::value &&
 
                     std::is_trivially_destructible<T>::value>;
 
template <typename CallableT, typename ThisT>
 
using EnableUnlessSameType =
 
    std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
 
template <typename CallableT, typename Ret, typename... Params>
 
using EnableIfCallable = std::enable_if_t<std::disjunction<
 
    std::is_void<Ret>,
 
    std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)),
 
                 Ret>,
 
    std::is_same<const decltype(std::declval<CallableT>()(
 
                     std::declval<Params>()...)),
 
                 Ret>,
 
    std::is_convertible<decltype(std::declval<CallableT>()(
 
                            std::declval<Params>()...)),
 
                        Ret>>::value>;
 
 
 
template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
 
protected:
 
  static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
 
 
 
  template <typename T, class = void>
 
  struct IsSizeLessThanThresholdT : std::false_type {};
 
 
 
  template <typename T>
 
  struct IsSizeLessThanThresholdT<
 
      T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
 
 
 
  // Provide a type function to map parameters that won't observe extra copies
 
  // or moves and which are small enough to likely pass in register to values
 
  // and all other types to l-value reference types. We use this to compute the
 
  // types used in our erased call utility to minimize copies and moves unless
 
  // doing so would force things unnecessarily into memory.
 
  //
 
  // The heuristic used is related to common ABI register passing conventions.
 
  // It doesn't have to be exact though, and in one way it is more strict
 
  // because we want to still be able to observe either moves *or* copies.
 
  template <typename T> struct AdjustedParamTBase {
 
    static_assert(!std::is_reference<T>::value,
 
                  "references should be handled by template specialization");
 
    using type = std::conditional_t<
 
        llvm::is_trivially_copy_constructible<T>::value &&
 
            llvm::is_trivially_move_constructible<T>::value &&
 
            IsSizeLessThanThresholdT<T>::value,
 
        T, T &>;
 
  };
 
 
 
  // This specialization ensures that 'AdjustedParam<V<T>&>' or
 
  // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
 
  // an incomplete type and V a templated type.
 
  template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
 
  template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
 
 
 
  template <typename T>
 
  using AdjustedParamT = typename AdjustedParamTBase<T>::type;
 
 
 
  // The type of the erased function pointer we use as a callback to dispatch to
 
  // the stored callable when it is trivial to move and destroy.
 
  using CallPtrT = ReturnT (*)(void *CallableAddr,
 
                               AdjustedParamT<ParamTs>... Params);
 
  using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
 
  using DestroyPtrT = void (*)(void *CallableAddr);
 
 
 
  /// A struct to hold a single trivial callback with sufficient alignment for
 
  /// our bitpacking.
 
  struct alignas(8) TrivialCallback {
 
    CallPtrT CallPtr;
 
  };
 
 
 
  /// A struct we use to aggregate three callbacks when we need full set of
 
  /// operations.
 
  struct alignas(8) NonTrivialCallbacks {
 
    CallPtrT CallPtr;
 
    MovePtrT MovePtr;
 
    DestroyPtrT DestroyPtr;
 
  };
 
 
 
  // Create a pointer union between either a pointer to a static trivial call
 
  // pointer in a struct or a pointer to a static struct of the call, move, and
 
  // destroy pointers.
 
  using CallbackPointerUnionT =
 
      PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
 
 
 
  // The main storage buffer. This will either have a pointer to out-of-line
 
  // storage or an inline buffer storing the callable.
 
  union StorageUnionT {
 
    // For out-of-line storage we keep a pointer to the underlying storage and
 
    // the size. This is enough to deallocate the memory.
 
    struct OutOfLineStorageT {
 
      void *StoragePtr;
 
      size_t Size;
 
      size_t Alignment;
 
    } OutOfLineStorage;
 
    static_assert(
 
        sizeof(OutOfLineStorageT) <= InlineStorageSize,
 
        "Should always use all of the out-of-line storage for inline storage!");
 
 
 
    // For in-line storage, we just provide an aligned character buffer. We
 
    // provide three pointers worth of storage here.
 
    // This is mutable as an inlined `const unique_function<void() const>` may
 
    // still modify its own mutable members.
 
    mutable std::aligned_storage_t<InlineStorageSize, alignof(void *)>
 
        InlineStorage;
 
  } StorageUnion;
 
 
 
  // A compressed pointer to either our dispatching callback or our table of
 
  // dispatching callbacks and the flag for whether the callable itself is
 
  // stored inline or not.
 
  PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
 
 
 
  bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
 
 
 
  bool isTrivialCallback() const {
 
    return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
 
  }
 
 
 
  CallPtrT getTrivialCallback() const {
 
    return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
 
  }
 
 
 
  NonTrivialCallbacks *getNonTrivialCallbacks() const {
 
    return CallbackAndInlineFlag.getPointer()
 
        .template get<NonTrivialCallbacks *>();
 
  }
 
 
 
  CallPtrT getCallPtr() const {
 
    return isTrivialCallback() ? getTrivialCallback()
 
                               : getNonTrivialCallbacks()->CallPtr;
 
  }
 
 
 
  // These three functions are only const in the narrow sense. They return
 
  // mutable pointers to function state.
 
  // This allows unique_function<T const>::operator() to be const, even if the
 
  // underlying functor may be internally mutable.
 
  //
 
  // const callers must ensure they're only used in const-correct ways.
 
  void *getCalleePtr() const {
 
    return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
 
  }
 
  void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
 
  void *getOutOfLineStorage() const {
 
    return StorageUnion.OutOfLineStorage.StoragePtr;
 
  }
 
 
 
  size_t getOutOfLineStorageSize() const {
 
    return StorageUnion.OutOfLineStorage.Size;
 
  }
 
  size_t getOutOfLineStorageAlignment() const {
 
    return StorageUnion.OutOfLineStorage.Alignment;
 
  }
 
 
 
  void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
 
    StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
 
  }
 
 
 
  template <typename CalledAsT>
 
  static ReturnT CallImpl(void *CallableAddr,
 
                          AdjustedParamT<ParamTs>... Params) {
 
    auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
 
    return Func(std::forward<ParamTs>(Params)...);
 
  }
 
 
 
  template <typename CallableT>
 
  static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
 
    new (LHSCallableAddr)
 
        CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
 
  }
 
 
 
  template <typename CallableT>
 
  static void DestroyImpl(void *CallableAddr) noexcept {
 
    reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
 
  }
 
 
 
  // The pointers to call/move/destroy functions are determined for each
 
  // callable type (and called-as type, which determines the overload chosen).
 
  // (definitions are out-of-line).
 
 
 
  // By default, we need an object that contains all the different
 
  // type erased behaviors needed. Create a static instance of the struct type
 
  // here and each instance will contain a pointer to it.
 
  // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
 
  template <typename CallableT, typename CalledAs, typename Enable = void>
 
  struct CallbacksHolder {
 
    static NonTrivialCallbacks Callbacks;
 
  };
 
  // See if we can create a trivial callback. We need the callable to be
 
  // trivially moved and trivially destroyed so that we don't have to store
 
  // type erased callbacks for those operations.
 
  template <typename CallableT, typename CalledAs>
 
  struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
 
    static TrivialCallback Callbacks;
 
  };
 
 
 
  // A simple tag type so the call-as type to be passed to the constructor.
 
  template <typename T> struct CalledAs {};
 
 
 
  // Essentially the "main" unique_function constructor, but subclasses
 
  // provide the qualified type to be used for the call.
 
  // (We always store a T, even if the call will use a pointer to const T).
 
  template <typename CallableT, typename CalledAsT>
 
  UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
 
    bool IsInlineStorage = true;
 
    void *CallableAddr = getInlineStorage();
 
    if (sizeof(CallableT) > InlineStorageSize ||
 
        alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
 
      IsInlineStorage = false;
 
      // Allocate out-of-line storage. FIXME: Use an explicit alignment
 
      // parameter in C++17 mode.
 
      auto Size = sizeof(CallableT);
 
      auto Alignment = alignof(CallableT);
 
      CallableAddr = allocate_buffer(Size, Alignment);
 
      setOutOfLineStorage(CallableAddr, Size, Alignment);
 
    }
 
 
 
    // Now move into the storage.
 
    new (CallableAddr) CallableT(std::move(Callable));
 
    CallbackAndInlineFlag.setPointerAndInt(
 
        &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage);
 
  }
 
 
 
  ~UniqueFunctionBase() {
 
    if (!CallbackAndInlineFlag.getPointer())
 
      return;
 
 
 
    // Cache this value so we don't re-check it after type-erased operations.
 
    bool IsInlineStorage = isInlineStorage();
 
 
 
    if (!isTrivialCallback())
 
      getNonTrivialCallbacks()->DestroyPtr(
 
          IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
 
 
 
    if (!IsInlineStorage)
 
      deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
 
                        getOutOfLineStorageAlignment());
 
  }
 
 
 
  UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
 
    // Copy the callback and inline flag.
 
    CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
 
 
 
    // If the RHS is empty, just copying the above is sufficient.
 
    if (!RHS)
 
      return;
 
 
 
    if (!isInlineStorage()) {
 
      // The out-of-line case is easiest to move.
 
      StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
 
    } else if (isTrivialCallback()) {
 
      // Move is trivial, just memcpy the bytes across.
 
      memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
 
    } else {
 
      // Non-trivial move, so dispatch to a type-erased implementation.
 
      getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
 
                                        RHS.getInlineStorage());
 
    }
 
 
 
    // Clear the old callback and inline flag to get back to as-if-null.
 
    RHS.CallbackAndInlineFlag = {};
 
 
 
#ifndef NDEBUG
 
    // In debug builds, we also scribble across the rest of the storage.
 
    memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
 
#endif
 
  }
 
 
 
  UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
 
    if (this == &RHS)
 
      return *this;
 
 
 
    // Because we don't try to provide any exception safety guarantees we can
 
    // implement move assignment very simply by first destroying the current
 
    // object and then move-constructing over top of it.
 
    this->~UniqueFunctionBase();
 
    new (this) UniqueFunctionBase(std::move(RHS));
 
    return *this;
 
  }
 
 
 
  UniqueFunctionBase() = default;
 
 
 
public:
 
  explicit operator bool() const {
 
    return (bool)CallbackAndInlineFlag.getPointer();
 
  }
 
};
 
 
 
template <typename R, typename... P>
 
template <typename CallableT, typename CalledAsT, typename Enable>
 
typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
 
    R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
 
    &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
 
 
 
template <typename R, typename... P>
 
template <typename CallableT, typename CalledAsT>
 
typename UniqueFunctionBase<R, P...>::TrivialCallback
 
    UniqueFunctionBase<R, P...>::CallbacksHolder<
 
        CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
 
        &CallImpl<CalledAsT>};
 
 
 
} // namespace detail
 
 
 
template <typename R, typename... P>
 
class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
 
  using Base = detail::UniqueFunctionBase<R, P...>;
 
 
 
public:
 
  unique_function() = default;
 
  unique_function(std::nullptr_t) {}
 
  unique_function(unique_function &&) = default;
 
  unique_function(const unique_function &) = delete;
 
  unique_function &operator=(unique_function &&) = default;
 
  unique_function &operator=(const unique_function &) = delete;
 
 
 
  template <typename CallableT>
 
  unique_function(
 
      CallableT Callable,
 
      detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
 
      detail::EnableIfCallable<CallableT, R, P...> * = nullptr)
 
      : Base(std::forward<CallableT>(Callable),
 
             typename Base::template CalledAs<CallableT>{}) {}
 
 
 
  R operator()(P... Params) {
 
    return this->getCallPtr()(this->getCalleePtr(), Params...);
 
  }
 
};
 
 
 
template <typename R, typename... P>
 
class unique_function<R(P...) const>
 
    : public detail::UniqueFunctionBase<R, P...> {
 
  using Base = detail::UniqueFunctionBase<R, P...>;
 
 
 
public:
 
  unique_function() = default;
 
  unique_function(std::nullptr_t) {}
 
  unique_function(unique_function &&) = default;
 
  unique_function(const unique_function &) = delete;
 
  unique_function &operator=(unique_function &&) = default;
 
  unique_function &operator=(const unique_function &) = delete;
 
 
 
  template <typename CallableT>
 
  unique_function(
 
      CallableT Callable,
 
      detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
 
      detail::EnableIfCallable<const CallableT, R, P...> * = nullptr)
 
      : Base(std::forward<CallableT>(Callable),
 
             typename Base::template CalledAs<const CallableT>{}) {}
 
 
 
  R operator()(P... Params) const {
 
    return this->getCallPtr()(this->getCalleePtr(), Params...);
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_FUNCTIONEXTRAS_H