//===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines a hash set that can be used to remove duplication of nodes
 
/// in a graph.  This code was originally created by Chris Lattner for use with
 
/// SelectionDAGCSEMap, but was isolated to provide use across the llvm code
 
/// set.
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_FOLDINGSET_H
 
#define LLVM_ADT_FOLDINGSET_H
 
 
 
#include "llvm/ADT/Hashing.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Support/Allocator.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <type_traits>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
/// This folding set used for two purposes:
 
///   1. Given information about a node we want to create, look up the unique
 
///      instance of the node in the set.  If the node already exists, return
 
///      it, otherwise return the bucket it should be inserted into.
 
///   2. Given a node that has already been created, remove it from the set.
 
///
 
/// This class is implemented as a single-link chained hash table, where the
 
/// "buckets" are actually the nodes themselves (the next pointer is in the
 
/// node).  The last node points back to the bucket to simplify node removal.
 
///
 
/// Any node that is to be included in the folding set must be a subclass of
 
/// FoldingSetNode.  The node class must also define a Profile method used to
 
/// establish the unique bits of data for the node.  The Profile method is
 
/// passed a FoldingSetNodeID object which is used to gather the bits.  Just
 
/// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
 
/// NOTE: That the folding set does not own the nodes and it is the
 
/// responsibility of the user to dispose of the nodes.
 
///
 
/// Eg.
 
///    class MyNode : public FoldingSetNode {
 
///    private:
 
///      std::string Name;
 
///      unsigned Value;
 
///    public:
 
///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
 
///       ...
 
///      void Profile(FoldingSetNodeID &ID) const {
 
///        ID.AddString(Name);
 
///        ID.AddInteger(Value);
 
///      }
 
///      ...
 
///    };
 
///
 
/// To define the folding set itself use the FoldingSet template;
 
///
 
/// Eg.
 
///    FoldingSet<MyNode> MyFoldingSet;
 
///
 
/// Four public methods are available to manipulate the folding set;
 
///
 
/// 1) If you have an existing node that you want add to the set but unsure
 
/// that the node might already exist then call;
 
///
 
///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
 
///
 
/// If The result is equal to the input then the node has been inserted.
 
/// Otherwise, the result is the node existing in the folding set, and the
 
/// input can be discarded (use the result instead.)
 
///
 
/// 2) If you are ready to construct a node but want to check if it already
 
/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
 
/// check;
 
///
 
///   FoldingSetNodeID ID;
 
///   ID.AddString(Name);
 
///   ID.AddInteger(Value);
 
///   void *InsertPoint;
 
///
 
///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
 
///
 
/// If found then M will be non-NULL, else InsertPoint will point to where it
 
/// should be inserted using InsertNode.
 
///
 
/// 3) If you get a NULL result from FindNodeOrInsertPos then you can insert a
 
/// new node with InsertNode;
 
///
 
///    MyFoldingSet.InsertNode(M, InsertPoint);
 
///
 
/// 4) Finally, if you want to remove a node from the folding set call;
 
///
 
///    bool WasRemoved = MyFoldingSet.RemoveNode(M);
 
///
 
/// The result indicates whether the node existed in the folding set.
 
 
 
class FoldingSetNodeID;
 
class StringRef;
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSetBase - Implements the folding set functionality.  The main
 
/// structure is an array of buckets.  Each bucket is indexed by the hash of
 
/// the nodes it contains.  The bucket itself points to the nodes contained
 
/// in the bucket via a singly linked list.  The last node in the list points
 
/// back to the bucket to facilitate node removal.
 
///
 
class FoldingSetBase {
 
protected:
 
  /// Buckets - Array of bucket chains.
 
  void **Buckets;
 
 
 
  /// NumBuckets - Length of the Buckets array.  Always a power of 2.
 
  unsigned NumBuckets;
 
 
 
  /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
 
  /// is greater than twice the number of buckets.
 
  unsigned NumNodes;
 
 
 
  explicit FoldingSetBase(unsigned Log2InitSize = 6);
 
  FoldingSetBase(FoldingSetBase &&Arg);
 
  FoldingSetBase &operator=(FoldingSetBase &&RHS);
 
  ~FoldingSetBase();
 
 
 
public:
 
  //===--------------------------------------------------------------------===//
 
  /// Node - This class is used to maintain the singly linked bucket list in
 
  /// a folding set.
 
  class Node {
 
  private:
 
    // NextInFoldingSetBucket - next link in the bucket list.
 
    void *NextInFoldingSetBucket = nullptr;
 
 
 
  public:
 
    Node() = default;
 
 
 
    // Accessors
 
    void *getNextInBucket() const { return NextInFoldingSetBucket; }
 
    void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
 
  };
 
 
 
  /// clear - Remove all nodes from the folding set.
 
  void clear();
 
 
 
  /// size - Returns the number of nodes in the folding set.
 
  unsigned size() const { return NumNodes; }
 
 
 
  /// empty - Returns true if there are no nodes in the folding set.
 
  bool empty() const { return NumNodes == 0; }
 
 
 
  /// capacity - Returns the number of nodes permitted in the folding set
 
  /// before a rebucket operation is performed.
 
  unsigned capacity() {
 
    // We allow a load factor of up to 2.0,
 
    // so that means our capacity is NumBuckets * 2
 
    return NumBuckets * 2;
 
  }
 
 
 
protected:
 
  /// Functions provided by the derived class to compute folding properties.
 
  /// This is effectively a vtable for FoldingSetBase, except that we don't
 
  /// actually store a pointer to it in the object.
 
  struct FoldingSetInfo {
 
    /// GetNodeProfile - Instantiations of the FoldingSet template implement
 
    /// this function to gather data bits for the given node.
 
    void (*GetNodeProfile)(const FoldingSetBase *Self, Node *N,
 
                           FoldingSetNodeID &ID);
 
 
 
    /// NodeEquals - Instantiations of the FoldingSet template implement
 
    /// this function to compare the given node with the given ID.
 
    bool (*NodeEquals)(const FoldingSetBase *Self, Node *N,
 
                       const FoldingSetNodeID &ID, unsigned IDHash,
 
                       FoldingSetNodeID &TempID);
 
 
 
    /// ComputeNodeHash - Instantiations of the FoldingSet template implement
 
    /// this function to compute a hash value for the given node.
 
    unsigned (*ComputeNodeHash)(const FoldingSetBase *Self, Node *N,
 
                                FoldingSetNodeID &TempID);
 
  };
 
 
 
private:
 
  /// GrowHashTable - Double the size of the hash table and rehash everything.
 
  void GrowHashTable(const FoldingSetInfo &Info);
 
 
 
  /// GrowBucketCount - resize the hash table and rehash everything.
 
  /// NewBucketCount must be a power of two, and must be greater than the old
 
  /// bucket count.
 
  void GrowBucketCount(unsigned NewBucketCount, const FoldingSetInfo &Info);
 
 
 
protected:
 
  // The below methods are protected to encourage subclasses to provide a more
 
  // type-safe API.
 
 
 
  /// reserve - Increase the number of buckets such that adding the
 
  /// EltCount-th node won't cause a rebucket operation. reserve is permitted
 
  /// to allocate more space than requested by EltCount.
 
  void reserve(unsigned EltCount, const FoldingSetInfo &Info);
 
 
 
  /// RemoveNode - Remove a node from the folding set, returning true if one
 
  /// was removed or false if the node was not in the folding set.
 
  bool RemoveNode(Node *N);
 
 
 
  /// GetOrInsertNode - If there is an existing simple Node exactly
 
  /// equal to the specified node, return it.  Otherwise, insert 'N' and return
 
  /// it instead.
 
  Node *GetOrInsertNode(Node *N, const FoldingSetInfo &Info);
 
 
 
  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
 
  /// return it.  If not, return the insertion token that will make insertion
 
  /// faster.
 
  Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos,
 
                            const FoldingSetInfo &Info);
 
 
 
  /// InsertNode - Insert the specified node into the folding set, knowing that
 
  /// it is not already in the folding set.  InsertPos must be obtained from
 
  /// FindNodeOrInsertPos.
 
  void InsertNode(Node *N, void *InsertPos, const FoldingSetInfo &Info);
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
 
 
/// DefaultFoldingSetTrait - This class provides default implementations
 
/// for FoldingSetTrait implementations.
 
template<typename T> struct DefaultFoldingSetTrait {
 
  static void Profile(const T &X, FoldingSetNodeID &ID) {
 
    X.Profile(ID);
 
  }
 
  static void Profile(T &X, FoldingSetNodeID &ID) {
 
    X.Profile(ID);
 
  }
 
 
 
  // Equals - Test if the profile for X would match ID, using TempID
 
  // to compute a temporary ID if necessary. The default implementation
 
  // just calls Profile and does a regular comparison. Implementations
 
  // can override this to provide more efficient implementations.
 
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
 
                            FoldingSetNodeID &TempID);
 
 
 
  // ComputeHash - Compute a hash value for X, using TempID to
 
  // compute a temporary ID if necessary. The default implementation
 
  // just calls Profile and does a regular hash computation.
 
  // Implementations can override this to provide more efficient
 
  // implementations.
 
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
 
};
 
 
 
/// FoldingSetTrait - This trait class is used to define behavior of how
 
/// to "profile" (in the FoldingSet parlance) an object of a given type.
 
/// The default behavior is to invoke a 'Profile' method on an object, but
 
/// through template specialization the behavior can be tailored for specific
 
/// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
 
/// to FoldingSets that were not originally designed to have that behavior.
 
template <typename T, typename Enable = void>
 
struct FoldingSetTrait : public DefaultFoldingSetTrait<T> {};
 
 
 
/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
 
/// for ContextualFoldingSets.
 
template<typename T, typename Ctx>
 
struct DefaultContextualFoldingSetTrait {
 
  static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
 
    X.Profile(ID, Context);
 
  }
 
 
 
  static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
 
                            FoldingSetNodeID &TempID, Ctx Context);
 
  static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
 
                                     Ctx Context);
 
};
 
 
 
/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
 
/// ContextualFoldingSets.
 
template<typename T, typename Ctx> struct ContextualFoldingSetTrait
 
  : public DefaultContextualFoldingSetTrait<T, Ctx> {};
 
 
 
//===--------------------------------------------------------------------===//
 
/// FoldingSetNodeIDRef - This class describes a reference to an interned
 
/// FoldingSetNodeID, which can be a useful to store node id data rather
 
/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
 
/// is often much larger than necessary, and the possibility of heap
 
/// allocation means it requires a non-trivial destructor call.
 
class FoldingSetNodeIDRef {
 
  const unsigned *Data = nullptr;
 
  size_t Size = 0;
 
 
 
public:
 
  FoldingSetNodeIDRef() = default;
 
  FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
 
 
 
  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
 
  /// used to lookup the node in the FoldingSetBase.
 
  unsigned ComputeHash() const {
 
    return static_cast<unsigned>(hash_combine_range(Data, Data + Size));
 
  }
 
 
 
  bool operator==(FoldingSetNodeIDRef) const;
 
 
 
  bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
 
 
 
  /// Used to compare the "ordering" of two nodes as defined by the
 
  /// profiled bits and their ordering defined by memcmp().
 
  bool operator<(FoldingSetNodeIDRef) const;
 
 
 
  const unsigned *getData() const { return Data; }
 
  size_t getSize() const { return Size; }
 
};
 
 
 
//===--------------------------------------------------------------------===//
 
/// FoldingSetNodeID - This class is used to gather all the unique data bits of
 
/// a node.  When all the bits are gathered this class is used to produce a
 
/// hash value for the node.
 
class FoldingSetNodeID {
 
  /// Bits - Vector of all the data bits that make the node unique.
 
  /// Use a SmallVector to avoid a heap allocation in the common case.
 
  SmallVector<unsigned, 32> Bits;
 
 
 
public:
 
  FoldingSetNodeID() = default;
 
 
 
  FoldingSetNodeID(FoldingSetNodeIDRef Ref)
 
    : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
 
 
 
  /// Add* - Add various data types to Bit data.
 
  void AddPointer(const void *Ptr) {
 
    // Note: this adds pointers to the hash using sizes and endianness that
 
    // depend on the host. It doesn't matter, however, because hashing on
 
    // pointer values is inherently unstable. Nothing should depend on the
 
    // ordering of nodes in the folding set.
 
    static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
 
                  "unexpected pointer size");
 
    AddInteger(reinterpret_cast<uintptr_t>(Ptr));
 
  }
 
  void AddInteger(signed I) { Bits.push_back(I); }
 
  void AddInteger(unsigned I) { Bits.push_back(I); }
 
  void AddInteger(long I) { AddInteger((unsigned long)I); }
 
  void AddInteger(unsigned long I) {
 
    if (sizeof(long) == sizeof(int))
 
      AddInteger(unsigned(I));
 
    else if (sizeof(long) == sizeof(long long)) {
 
      AddInteger((unsigned long long)I);
 
    } else {
 
      llvm_unreachable("unexpected sizeof(long)");
 
    }
 
  }
 
  void AddInteger(long long I) { AddInteger((unsigned long long)I); }
 
  void AddInteger(unsigned long long I) {
 
    AddInteger(unsigned(I));
 
    AddInteger(unsigned(I >> 32));
 
  }
 
 
 
  void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
 
  void AddString(StringRef String);
 
  void AddNodeID(const FoldingSetNodeID &ID);
 
 
 
  template <typename T>
 
  inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
 
 
 
  /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
 
  /// object to be used to compute a new profile.
 
  inline void clear() { Bits.clear(); }
 
 
 
  /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
 
  /// to lookup the node in the FoldingSetBase.
 
  unsigned ComputeHash() const {
 
    return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
 
  }
 
 
 
  /// operator== - Used to compare two nodes to each other.
 
  bool operator==(const FoldingSetNodeID &RHS) const;
 
  bool operator==(const FoldingSetNodeIDRef RHS) const;
 
 
 
  bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
 
  bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
 
 
 
  /// Used to compare the "ordering" of two nodes as defined by the
 
  /// profiled bits and their ordering defined by memcmp().
 
  bool operator<(const FoldingSetNodeID &RHS) const;
 
  bool operator<(const FoldingSetNodeIDRef RHS) const;
 
 
 
  /// Intern - Copy this node's data to a memory region allocated from the
 
  /// given allocator and return a FoldingSetNodeIDRef describing the
 
  /// interned data.
 
  FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
 
};
 
 
 
// Convenience type to hide the implementation of the folding set.
 
using FoldingSetNode = FoldingSetBase::Node;
 
template<class T> class FoldingSetIterator;
 
template<class T> class FoldingSetBucketIterator;
 
 
 
// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
 
// require the definition of FoldingSetNodeID.
 
template<typename T>
 
inline bool
 
DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
 
                                  unsigned /*IDHash*/,
 
                                  FoldingSetNodeID &TempID) {
 
  FoldingSetTrait<T>::Profile(X, TempID);
 
  return TempID == ID;
 
}
 
template<typename T>
 
inline unsigned
 
DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
 
  FoldingSetTrait<T>::Profile(X, TempID);
 
  return TempID.ComputeHash();
 
}
 
template<typename T, typename Ctx>
 
inline bool
 
DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
 
                                                 const FoldingSetNodeID &ID,
 
                                                 unsigned /*IDHash*/,
 
                                                 FoldingSetNodeID &TempID,
 
                                                 Ctx Context) {
 
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
 
  return TempID == ID;
 
}
 
template<typename T, typename Ctx>
 
inline unsigned
 
DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
 
                                                      FoldingSetNodeID &TempID,
 
                                                      Ctx Context) {
 
  ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
 
  return TempID.ComputeHash();
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSetImpl - An implementation detail that lets us share code between
 
/// FoldingSet and ContextualFoldingSet.
 
template <class Derived, class T> class FoldingSetImpl : public FoldingSetBase {
 
protected:
 
  explicit FoldingSetImpl(unsigned Log2InitSize)
 
      : FoldingSetBase(Log2InitSize) {}
 
 
 
  FoldingSetImpl(FoldingSetImpl &&Arg) = default;
 
  FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default;
 
  ~FoldingSetImpl() = default;
 
 
 
public:
 
  using iterator = FoldingSetIterator<T>;
 
 
 
  iterator begin() { return iterator(Buckets); }
 
  iterator end() { return iterator(Buckets+NumBuckets); }
 
 
 
  using const_iterator = FoldingSetIterator<const T>;
 
 
 
  const_iterator begin() const { return const_iterator(Buckets); }
 
  const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
 
 
 
  using bucket_iterator = FoldingSetBucketIterator<T>;
 
 
 
  bucket_iterator bucket_begin(unsigned hash) {
 
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
 
  }
 
 
 
  bucket_iterator bucket_end(unsigned hash) {
 
    return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
 
  }
 
 
 
  /// reserve - Increase the number of buckets such that adding the
 
  /// EltCount-th node won't cause a rebucket operation. reserve is permitted
 
  /// to allocate more space than requested by EltCount.
 
  void reserve(unsigned EltCount) {
 
    return FoldingSetBase::reserve(EltCount, Derived::getFoldingSetInfo());
 
  }
 
 
 
  /// RemoveNode - Remove a node from the folding set, returning true if one
 
  /// was removed or false if the node was not in the folding set.
 
  bool RemoveNode(T *N) {
 
    return FoldingSetBase::RemoveNode(N);
 
  }
 
 
 
  /// GetOrInsertNode - If there is an existing simple Node exactly
 
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
 
  /// return it instead.
 
  T *GetOrInsertNode(T *N) {
 
    return static_cast<T *>(
 
        FoldingSetBase::GetOrInsertNode(N, Derived::getFoldingSetInfo()));
 
  }
 
 
 
  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
 
  /// return it.  If not, return the insertion token that will make insertion
 
  /// faster.
 
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
 
    return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(
 
        ID, InsertPos, Derived::getFoldingSetInfo()));
 
  }
 
 
 
  /// InsertNode - Insert the specified node into the folding set, knowing that
 
  /// it is not already in the folding set.  InsertPos must be obtained from
 
  /// FindNodeOrInsertPos.
 
  void InsertNode(T *N, void *InsertPos) {
 
    FoldingSetBase::InsertNode(N, InsertPos, Derived::getFoldingSetInfo());
 
  }
 
 
 
  /// InsertNode - Insert the specified node into the folding set, knowing that
 
  /// it is not already in the folding set.
 
  void InsertNode(T *N) {
 
    T *Inserted = GetOrInsertNode(N);
 
    (void)Inserted;
 
    assert(Inserted == N && "Node already inserted!");
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSet - This template class is used to instantiate a specialized
 
/// implementation of the folding set to the node class T.  T must be a
 
/// subclass of FoldingSetNode and implement a Profile function.
 
///
 
/// Note that this set type is movable and move-assignable. However, its
 
/// moved-from state is not a valid state for anything other than
 
/// move-assigning and destroying. This is primarily to enable movable APIs
 
/// that incorporate these objects.
 
template <class T>
 
class FoldingSet : public FoldingSetImpl<FoldingSet<T>, T> {
 
  using Super = FoldingSetImpl<FoldingSet, T>;
 
  using Node = typename Super::Node;
 
 
 
  /// GetNodeProfile - Each instantiation of the FoldingSet needs to provide a
 
  /// way to convert nodes into a unique specifier.
 
  static void GetNodeProfile(const FoldingSetBase *, Node *N,
 
                             FoldingSetNodeID &ID) {
 
    T *TN = static_cast<T *>(N);
 
    FoldingSetTrait<T>::Profile(*TN, ID);
 
  }
 
 
 
  /// NodeEquals - Instantiations may optionally provide a way to compare a
 
  /// node with a specified ID.
 
  static bool NodeEquals(const FoldingSetBase *, Node *N,
 
                         const FoldingSetNodeID &ID, unsigned IDHash,
 
                         FoldingSetNodeID &TempID) {
 
    T *TN = static_cast<T *>(N);
 
    return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
 
  }
 
 
 
  /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
 
  /// hash value directly from a node.
 
  static unsigned ComputeNodeHash(const FoldingSetBase *, Node *N,
 
                                  FoldingSetNodeID &TempID) {
 
    T *TN = static_cast<T *>(N);
 
    return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
 
  }
 
 
 
  static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() {
 
    static constexpr FoldingSetBase::FoldingSetInfo Info = {
 
        GetNodeProfile, NodeEquals, ComputeNodeHash};
 
    return Info;
 
  }
 
  friend Super;
 
 
 
public:
 
  explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {}
 
  FoldingSet(FoldingSet &&Arg) = default;
 
  FoldingSet &operator=(FoldingSet &&RHS) = default;
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// ContextualFoldingSet - This template class is a further refinement
 
/// of FoldingSet which provides a context argument when calling
 
/// Profile on its nodes.  Currently, that argument is fixed at
 
/// initialization time.
 
///
 
/// T must be a subclass of FoldingSetNode and implement a Profile
 
/// function with signature
 
///   void Profile(FoldingSetNodeID &, Ctx);
 
template <class T, class Ctx>
 
class ContextualFoldingSet
 
    : public FoldingSetImpl<ContextualFoldingSet<T, Ctx>, T> {
 
  // Unfortunately, this can't derive from FoldingSet<T> because the
 
  // construction of the vtable for FoldingSet<T> requires
 
  // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
 
  // requires a single-argument T::Profile().
 
 
 
  using Super = FoldingSetImpl<ContextualFoldingSet, T>;
 
  using Node = typename Super::Node;
 
 
 
  Ctx Context;
 
 
 
  static const Ctx &getContext(const FoldingSetBase *Base) {
 
    return static_cast<const ContextualFoldingSet*>(Base)->Context;
 
  }
 
 
 
  /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
 
  /// way to convert nodes into a unique specifier.
 
  static void GetNodeProfile(const FoldingSetBase *Base, Node *N,
 
                             FoldingSetNodeID &ID) {
 
    T *TN = static_cast<T *>(N);
 
    ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, getContext(Base));
 
  }
 
 
 
  static bool NodeEquals(const FoldingSetBase *Base, Node *N,
 
                         const FoldingSetNodeID &ID, unsigned IDHash,
 
                         FoldingSetNodeID &TempID) {
 
    T *TN = static_cast<T *>(N);
 
    return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
 
                                                     getContext(Base));
 
  }
 
 
 
  static unsigned ComputeNodeHash(const FoldingSetBase *Base, Node *N,
 
                                  FoldingSetNodeID &TempID) {
 
    T *TN = static_cast<T *>(N);
 
    return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID,
 
                                                          getContext(Base));
 
  }
 
 
 
  static const FoldingSetBase::FoldingSetInfo &getFoldingSetInfo() {
 
    static constexpr FoldingSetBase::FoldingSetInfo Info = {
 
        GetNodeProfile, NodeEquals, ComputeNodeHash};
 
    return Info;
 
  }
 
  friend Super;
 
 
 
public:
 
  explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
 
      : Super(Log2InitSize), Context(Context) {}
 
 
 
  Ctx getContext() const { return Context; }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSetVector - This template class combines a FoldingSet and a vector
 
/// to provide the interface of FoldingSet but with deterministic iteration
 
/// order based on the insertion order. T must be a subclass of FoldingSetNode
 
/// and implement a Profile function.
 
template <class T, class VectorT = SmallVector<T*, 8>>
 
class FoldingSetVector {
 
  FoldingSet<T> Set;
 
  VectorT Vector;
 
 
 
public:
 
  explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}
 
 
 
  using iterator = pointee_iterator<typename VectorT::iterator>;
 
 
 
  iterator begin() { return Vector.begin(); }
 
  iterator end()   { return Vector.end(); }
 
 
 
  using const_iterator = pointee_iterator<typename VectorT::const_iterator>;
 
 
 
  const_iterator begin() const { return Vector.begin(); }
 
  const_iterator end()   const { return Vector.end(); }
 
 
 
  /// clear - Remove all nodes from the folding set.
 
  void clear() { Set.clear(); Vector.clear(); }
 
 
 
  /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
 
  /// return it.  If not, return the insertion token that will make insertion
 
  /// faster.
 
  T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
 
    return Set.FindNodeOrInsertPos(ID, InsertPos);
 
  }
 
 
 
  /// GetOrInsertNode - If there is an existing simple Node exactly
 
  /// equal to the specified node, return it.  Otherwise, insert 'N' and
 
  /// return it instead.
 
  T *GetOrInsertNode(T *N) {
 
    T *Result = Set.GetOrInsertNode(N);
 
    if (Result == N) Vector.push_back(N);
 
    return Result;
 
  }
 
 
 
  /// InsertNode - Insert the specified node into the folding set, knowing that
 
  /// it is not already in the folding set.  InsertPos must be obtained from
 
  /// FindNodeOrInsertPos.
 
  void InsertNode(T *N, void *InsertPos) {
 
    Set.InsertNode(N, InsertPos);
 
    Vector.push_back(N);
 
  }
 
 
 
  /// InsertNode - Insert the specified node into the folding set, knowing that
 
  /// it is not already in the folding set.
 
  void InsertNode(T *N) {
 
    Set.InsertNode(N);
 
    Vector.push_back(N);
 
  }
 
 
 
  /// size - Returns the number of nodes in the folding set.
 
  unsigned size() const { return Set.size(); }
 
 
 
  /// empty - Returns true if there are no nodes in the folding set.
 
  bool empty() const { return Set.empty(); }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSetIteratorImpl - This is the common iterator support shared by all
 
/// folding sets, which knows how to walk the folding set hash table.
 
class FoldingSetIteratorImpl {
 
protected:
 
  FoldingSetNode *NodePtr;
 
 
 
  FoldingSetIteratorImpl(void **Bucket);
 
 
 
  void advance();
 
 
 
public:
 
  bool operator==(const FoldingSetIteratorImpl &RHS) const {
 
    return NodePtr == RHS.NodePtr;
 
  }
 
  bool operator!=(const FoldingSetIteratorImpl &RHS) const {
 
    return NodePtr != RHS.NodePtr;
 
  }
 
};
 
 
 
template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
 
public:
 
  explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
 
 
 
  T &operator*() const {
 
    return *static_cast<T*>(NodePtr);
 
  }
 
 
 
  T *operator->() const {
 
    return static_cast<T*>(NodePtr);
 
  }
 
 
 
  inline FoldingSetIterator &operator++() {          // Preincrement
 
    advance();
 
    return *this;
 
  }
 
  FoldingSetIterator operator++(int) {        // Postincrement
 
    FoldingSetIterator tmp = *this; ++*this; return tmp;
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
 
/// shared by all folding sets, which knows how to walk a particular bucket
 
/// of a folding set hash table.
 
class FoldingSetBucketIteratorImpl {
 
protected:
 
  void *Ptr;
 
 
 
  explicit FoldingSetBucketIteratorImpl(void **Bucket);
 
 
 
  FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}
 
 
 
  void advance() {
 
    void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
 
    uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
 
    Ptr = reinterpret_cast<void*>(x);
 
  }
 
 
 
public:
 
  bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
 
    return Ptr == RHS.Ptr;
 
  }
 
  bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
 
    return Ptr != RHS.Ptr;
 
  }
 
};
 
 
 
template <class T>
 
class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
 
public:
 
  explicit FoldingSetBucketIterator(void **Bucket) :
 
    FoldingSetBucketIteratorImpl(Bucket) {}
 
 
 
  FoldingSetBucketIterator(void **Bucket, bool) :
 
    FoldingSetBucketIteratorImpl(Bucket, true) {}
 
 
 
  T &operator*() const { return *static_cast<T*>(Ptr); }
 
  T *operator->() const { return static_cast<T*>(Ptr); }
 
 
 
  inline FoldingSetBucketIterator &operator++() { // Preincrement
 
    advance();
 
    return *this;
 
  }
 
  FoldingSetBucketIterator operator++(int) {      // Postincrement
 
    FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
 
  }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
 
/// types in an enclosing object so that they can be inserted into FoldingSets.
 
template <typename T>
 
class FoldingSetNodeWrapper : public FoldingSetNode {
 
  T data;
 
 
 
public:
 
  template <typename... Ts>
 
  explicit FoldingSetNodeWrapper(Ts &&... Args)
 
      : data(std::forward<Ts>(Args)...) {}
 
 
 
  void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
 
 
 
  T &getValue() { return data; }
 
  const T &getValue() const { return data; }
 
 
 
  operator T&() { return data; }
 
  operator const T&() const { return data; }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
 
/// a FoldingSetNodeID value rather than requiring the node to recompute it
 
/// each time it is needed. This trades space for speed (which can be
 
/// significant if the ID is long), and it also permits nodes to drop
 
/// information that would otherwise only be required for recomputing an ID.
 
class FastFoldingSetNode : public FoldingSetNode {
 
  FoldingSetNodeID FastID;
 
 
 
protected:
 
  explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
 
 
 
public:
 
  void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
// Partial specializations of FoldingSetTrait.
 
 
 
template<typename T> struct FoldingSetTrait<T*> {
 
  static inline void Profile(T *X, FoldingSetNodeID &ID) {
 
    ID.AddPointer(X);
 
  }
 
};
 
template <typename T1, typename T2>
 
struct FoldingSetTrait<std::pair<T1, T2>> {
 
  static inline void Profile(const std::pair<T1, T2> &P,
 
                             FoldingSetNodeID &ID) {
 
    ID.Add(P.first);
 
    ID.Add(P.second);
 
  }
 
};
 
 
 
template <typename T>
 
struct FoldingSetTrait<T, std::enable_if_t<std::is_enum<T>::value>> {
 
  static void Profile(const T &X, FoldingSetNodeID &ID) {
 
    ID.AddInteger(static_cast<std::underlying_type_t<T>>(X));
 
  }
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_FOLDINGSET_H