//===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// Generic implementation of equivalence classes through the use Tarjan's
 
/// efficient union-find algorithm.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_EQUIVALENCECLASSES_H
 
#define LLVM_ADT_EQUIVALENCECLASSES_H
 
 
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <iterator>
 
#include <set>
 
 
 
namespace llvm {
 
 
 
/// EquivalenceClasses - This represents a collection of equivalence classes and
 
/// supports three efficient operations: insert an element into a class of its
 
/// own, union two classes, and find the class for a given element.  In
 
/// addition to these modification methods, it is possible to iterate over all
 
/// of the equivalence classes and all of the elements in a class.
 
///
 
/// This implementation is an efficient implementation that only stores one copy
 
/// of the element being indexed per entry in the set, and allows any arbitrary
 
/// type to be indexed (as long as it can be ordered with operator< or a
 
/// comparator is provided).
 
///
 
/// Here is a simple example using integers:
 
///
 
/// \code
 
///  EquivalenceClasses<int> EC;
 
///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
 
///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
 
///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
 
///
 
///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
 
///       I != E; ++I) {           // Iterate over all of the equivalence sets.
 
///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
 
///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
 
///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
 
///      cerr << *MI << " ";  // Print member.
 
///    cerr << "\n";   // Finish set.
 
///  }
 
/// \endcode
 
///
 
/// This example prints:
 
///   4
 
///   5 1 2
 
///
 
template <class ElemTy, class Compare = std::less<ElemTy>>
 
class EquivalenceClasses {
 
  /// ECValue - The EquivalenceClasses data structure is just a set of these.
 
  /// Each of these represents a relation for a value.  First it stores the
 
  /// value itself, which provides the ordering that the set queries.  Next, it
 
  /// provides a "next pointer", which is used to enumerate all of the elements
 
  /// in the unioned set.  Finally, it defines either a "end of list pointer" or
 
  /// "leader pointer" depending on whether the value itself is a leader.  A
 
  /// "leader pointer" points to the node that is the leader for this element,
 
  /// if the node is not a leader.  A "end of list pointer" points to the last
 
  /// node in the list of members of this list.  Whether or not a node is a
 
  /// leader is determined by a bit stolen from one of the pointers.
 
  class ECValue {
 
    friend class EquivalenceClasses;
 
 
 
    mutable const ECValue *Leader, *Next;
 
    ElemTy Data;
 
 
 
    // ECValue ctor - Start out with EndOfList pointing to this node, Next is
 
    // Null, isLeader = true.
 
    ECValue(const ElemTy &Elt)
 
      : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
 
 
 
    const ECValue *getLeader() const {
 
      if (isLeader()) return this;
 
      if (Leader->isLeader()) return Leader;
 
      // Path compression.
 
      return Leader = Leader->getLeader();
 
    }
 
 
 
    const ECValue *getEndOfList() const {
 
      assert(isLeader() && "Cannot get the end of a list for a non-leader!");
 
      return Leader;
 
    }
 
 
 
    void setNext(const ECValue *NewNext) const {
 
      assert(getNext() == nullptr && "Already has a next pointer!");
 
      Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
 
    }
 
 
 
  public:
 
    ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
 
                                  Data(RHS.Data) {
 
      // Only support copying of singleton nodes.
 
      assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
 
    }
 
 
 
    bool isLeader() const { return (intptr_t)Next & 1; }
 
    const ElemTy &getData() const { return Data; }
 
 
 
    const ECValue *getNext() const {
 
      return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
 
    }
 
  };
 
 
 
  /// A wrapper of the comparator, to be passed to the set.
 
  struct ECValueComparator {
 
    using is_transparent = void;
 
 
 
    ECValueComparator() : compare(Compare()) {}
 
 
 
    bool operator()(const ECValue &lhs, const ECValue &rhs) const {
 
      return compare(lhs.Data, rhs.Data);
 
    }
 
 
 
    template <typename T>
 
    bool operator()(const T &lhs, const ECValue &rhs) const {
 
      return compare(lhs, rhs.Data);
 
    }
 
 
 
    template <typename T>
 
    bool operator()(const ECValue &lhs, const T &rhs) const {
 
      return compare(lhs.Data, rhs);
 
    }
 
 
 
    const Compare compare;
 
  };
 
 
 
  /// TheMapping - This implicitly provides a mapping from ElemTy values to the
 
  /// ECValues, it just keeps the key as part of the value.
 
  std::set<ECValue, ECValueComparator> TheMapping;
 
 
 
public:
 
  EquivalenceClasses() = default;
 
  EquivalenceClasses(const EquivalenceClasses &RHS) {
 
    operator=(RHS);
 
  }
 
 
 
  const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
 
    TheMapping.clear();
 
    for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
 
      if (I->isLeader()) {
 
        member_iterator MI = RHS.member_begin(I);
 
        member_iterator LeaderIt = member_begin(insert(*MI));
 
        for (++MI; MI != member_end(); ++MI)
 
          unionSets(LeaderIt, member_begin(insert(*MI)));
 
      }
 
    return *this;
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Inspection methods
 
  //
 
 
 
  /// iterator* - Provides a way to iterate over all values in the set.
 
  using iterator =
 
      typename std::set<ECValue, ECValueComparator>::const_iterator;
 
 
 
  iterator begin() const { return TheMapping.begin(); }
 
  iterator end() const { return TheMapping.end(); }
 
 
 
  bool empty() const { return TheMapping.empty(); }
 
 
 
  /// member_* Iterate over the members of an equivalence class.
 
  class member_iterator;
 
  member_iterator member_begin(iterator I) const {
 
    // Only leaders provide anything to iterate over.
 
    return member_iterator(I->isLeader() ? &*I : nullptr);
 
  }
 
  member_iterator member_end() const {
 
    return member_iterator(nullptr);
 
  }
 
 
 
  /// findValue - Return an iterator to the specified value.  If it does not
 
  /// exist, end() is returned.
 
  iterator findValue(const ElemTy &V) const {
 
    return TheMapping.find(V);
 
  }
 
 
 
  /// getLeaderValue - Return the leader for the specified value that is in the
 
  /// set.  It is an error to call this method for a value that is not yet in
 
  /// the set.  For that, call getOrInsertLeaderValue(V).
 
  const ElemTy &getLeaderValue(const ElemTy &V) const {
 
    member_iterator MI = findLeader(V);
 
    assert(MI != member_end() && "Value is not in the set!");
 
    return *MI;
 
  }
 
 
 
  /// getOrInsertLeaderValue - Return the leader for the specified value that is
 
  /// in the set.  If the member is not in the set, it is inserted, then
 
  /// returned.
 
  const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
 
    member_iterator MI = findLeader(insert(V));
 
    assert(MI != member_end() && "Value is not in the set!");
 
    return *MI;
 
  }
 
 
 
  /// getNumClasses - Return the number of equivalence classes in this set.
 
  /// Note that this is a linear time operation.
 
  unsigned getNumClasses() const {
 
    unsigned NC = 0;
 
    for (iterator I = begin(), E = end(); I != E; ++I)
 
      if (I->isLeader()) ++NC;
 
    return NC;
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Mutation methods
 
 
 
  /// insert - Insert a new value into the union/find set, ignoring the request
 
  /// if the value already exists.
 
  iterator insert(const ElemTy &Data) {
 
    return TheMapping.insert(ECValue(Data)).first;
 
  }
 
 
 
  /// findLeader - Given a value in the set, return a member iterator for the
 
  /// equivalence class it is in.  This does the path-compression part that
 
  /// makes union-find "union findy".  This returns an end iterator if the value
 
  /// is not in the equivalence class.
 
  member_iterator findLeader(iterator I) const {
 
    if (I == TheMapping.end()) return member_end();
 
    return member_iterator(I->getLeader());
 
  }
 
  member_iterator findLeader(const ElemTy &V) const {
 
    return findLeader(TheMapping.find(V));
 
  }
 
 
 
  /// union - Merge the two equivalence sets for the specified values, inserting
 
  /// them if they do not already exist in the equivalence set.
 
  member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
 
    iterator V1I = insert(V1), V2I = insert(V2);
 
    return unionSets(findLeader(V1I), findLeader(V2I));
 
  }
 
  member_iterator unionSets(member_iterator L1, member_iterator L2) {
 
    assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
 
    if (L1 == L2) return L1;   // Unifying the same two sets, noop.
 
 
 
    // Otherwise, this is a real union operation.  Set the end of the L1 list to
 
    // point to the L2 leader node.
 
    const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
 
    L1LV.getEndOfList()->setNext(&L2LV);
 
 
 
    // Update L1LV's end of list pointer.
 
    L1LV.Leader = L2LV.getEndOfList();
 
 
 
    // Clear L2's leader flag:
 
    L2LV.Next = L2LV.getNext();
 
 
 
    // L2's leader is now L1.
 
    L2LV.Leader = &L1LV;
 
    return L1;
 
  }
 
 
 
  // isEquivalent - Return true if V1 is equivalent to V2. This can happen if
 
  // V1 is equal to V2 or if they belong to one equivalence class.
 
  bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
 
    // Fast path: any element is equivalent to itself.
 
    if (V1 == V2)
 
      return true;
 
    auto It = findLeader(V1);
 
    return It != member_end() && It == findLeader(V2);
 
  }
 
 
 
  class member_iterator {
 
    friend class EquivalenceClasses;
 
 
 
    const ECValue *Node;
 
 
 
  public:
 
    using iterator_category = std::forward_iterator_tag;
 
    using value_type = const ElemTy;
 
    using size_type = std::size_t;
 
    using difference_type = std::ptrdiff_t;
 
    using pointer = value_type *;
 
    using reference = value_type &;
 
 
 
    explicit member_iterator() = default;
 
    explicit member_iterator(const ECValue *N) : Node(N) {}
 
 
 
    reference operator*() const {
 
      assert(Node != nullptr && "Dereferencing end()!");
 
      return Node->getData();
 
    }
 
    pointer operator->() const { return &operator*(); }
 
 
 
    member_iterator &operator++() {
 
      assert(Node != nullptr && "++'d off the end of the list!");
 
      Node = Node->getNext();
 
      return *this;
 
    }
 
 
 
    member_iterator operator++(int) {    // postincrement operators.
 
      member_iterator tmp = *this;
 
      ++*this;
 
      return tmp;
 
    }
 
 
 
    bool operator==(const member_iterator &RHS) const {
 
      return Node == RHS.Node;
 
    }
 
    bool operator!=(const member_iterator &RHS) const {
 
      return Node != RHS.Node;
 
    }
 
  };
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_EQUIVALENCECLASSES_H