//===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file builds on the ADT/GraphTraits.h file to build generic depth
 
/// first graph iterator.  This file exposes the following functions/types:
 
///
 
/// df_begin/df_end/df_iterator
 
///   * Normal depth-first iteration - visit a node and then all of its
 
///     children.
 
///
 
/// idf_begin/idf_end/idf_iterator
 
///   * Depth-first iteration on the 'inverse' graph.
 
///
 
/// df_ext_begin/df_ext_end/df_ext_iterator
 
///   * Normal depth-first iteration - visit a node and then all of its
 
///     children. This iterator stores the 'visited' set in an external set,
 
///     which allows it to be more efficient, and allows external clients to
 
///     use the set for other purposes.
 
///
 
/// idf_ext_begin/idf_ext_end/idf_ext_iterator
 
///   * Depth-first iteration on the 'inverse' graph.
 
///     This iterator stores the 'visited' set in an external set, which
 
///     allows it to be more efficient, and allows external clients to use
 
///     the set for other purposes.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
 
#define LLVM_ADT_DEPTHFIRSTITERATOR_H
 
 
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include <iterator>
 
#include <optional>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
// df_iterator_storage - A private class which is used to figure out where to
 
// store the visited set.
 
template<class SetType, bool External>   // Non-external set
 
class df_iterator_storage {
 
public:
 
  SetType Visited;
 
};
 
 
 
template<class SetType>
 
class df_iterator_storage<SetType, true> {
 
public:
 
  df_iterator_storage(SetType &VSet) : Visited(VSet) {}
 
  df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
 
 
 
  SetType &Visited;
 
};
 
 
 
// The visited stated for the iteration is a simple set augmented with
 
// one more method, completed, which is invoked when all children of a
 
// node have been processed. It is intended to distinguish of back and
 
// cross edges in the spanning tree but is not used in the common case.
 
template <typename NodeRef, unsigned SmallSize=8>
 
struct df_iterator_default_set : public SmallPtrSet<NodeRef, SmallSize> {
 
  using BaseSet = SmallPtrSet<NodeRef, SmallSize>;
 
  using iterator = typename BaseSet::iterator;
 
 
 
  std::pair<iterator,bool> insert(NodeRef N) { return BaseSet::insert(N); }
 
  template <typename IterT>
 
  void insert(IterT Begin, IterT End) { BaseSet::insert(Begin,End); }
 
 
 
  void completed(NodeRef) {}
 
};
 
 
 
// Generic Depth First Iterator
 
template <class GraphT,
 
          class SetType =
 
              df_iterator_default_set<typename GraphTraits<GraphT>::NodeRef>,
 
          bool ExtStorage = false, class GT = GraphTraits<GraphT>>
 
class df_iterator : public df_iterator_storage<SetType, ExtStorage> {
 
public:
 
  using iterator_category = std::forward_iterator_tag;
 
  using value_type = typename GT::NodeRef;
 
  using difference_type = std::ptrdiff_t;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
 
 
private:
 
  using NodeRef = typename GT::NodeRef;
 
  using ChildItTy = typename GT::ChildIteratorType;
 
 
 
  // First element is node reference, second is the 'next child' to visit.
 
  // The second child is initialized lazily to pick up graph changes during the
 
  // DFS.
 
  using StackElement = std::pair<NodeRef, std::optional<ChildItTy>>;
 
 
 
  // VisitStack - Used to maintain the ordering.  Top = current block
 
  std::vector<StackElement> VisitStack;
 
 
 
  inline df_iterator(NodeRef Node) {
 
    this->Visited.insert(Node);
 
    VisitStack.push_back(StackElement(Node, std::nullopt));
 
  }
 
 
 
  inline df_iterator() = default; // End is when stack is empty
 
 
 
  inline df_iterator(NodeRef Node, SetType &S)
 
      : df_iterator_storage<SetType, ExtStorage>(S) {
 
    if (this->Visited.insert(Node).second)
 
      VisitStack.push_back(StackElement(Node, std::nullopt));
 
  }
 
 
 
  inline df_iterator(SetType &S)
 
    : df_iterator_storage<SetType, ExtStorage>(S) {
 
    // End is when stack is empty
 
  }
 
 
 
  inline void toNext() {
 
    do {
 
      NodeRef Node = VisitStack.back().first;
 
      std::optional<ChildItTy> &Opt = VisitStack.back().second;
 
 
 
      if (!Opt)
 
        Opt.emplace(GT::child_begin(Node));
 
 
 
      // Notice that we directly mutate *Opt here, so that
 
      // VisitStack.back().second actually gets updated as the iterator
 
      // increases.
 
      while (*Opt != GT::child_end(Node)) {
 
        NodeRef Next = *(*Opt)++;
 
        // Has our next sibling been visited?
 
        if (this->Visited.insert(Next).second) {
 
          // No, do it now.
 
          VisitStack.push_back(StackElement(Next, std::nullopt));
 
          return;
 
        }
 
      }
 
      this->Visited.completed(Node);
 
 
 
      // Oops, ran out of successors... go up a level on the stack.
 
      VisitStack.pop_back();
 
    } while (!VisitStack.empty());
 
  }
 
 
 
public:
 
  // Provide static begin and end methods as our public "constructors"
 
  static df_iterator begin(const GraphT &G) {
 
    return df_iterator(GT::getEntryNode(G));
 
  }
 
  static df_iterator end(const GraphT &G) { return df_iterator(); }
 
 
 
  // Static begin and end methods as our public ctors for external iterators
 
  static df_iterator begin(const GraphT &G, SetType &S) {
 
    return df_iterator(GT::getEntryNode(G), S);
 
  }
 
  static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); }
 
 
 
  bool operator==(const df_iterator &x) const {
 
    return VisitStack == x.VisitStack;
 
  }
 
  bool operator!=(const df_iterator &x) const { return !(*this == x); }
 
 
 
  const NodeRef &operator*() const { return VisitStack.back().first; }
 
 
 
  // This is a nonstandard operator-> that dereferences the pointer an extra
 
  // time... so that you can actually call methods ON the Node, because
 
  // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
 
  //
 
  NodeRef operator->() const { return **this; }
 
 
 
  df_iterator &operator++() { // Preincrement
 
    toNext();
 
    return *this;
 
  }
 
 
 
  /// Skips all children of the current node and traverses to next node
 
  ///
 
  /// Note: This function takes care of incrementing the iterator. If you
 
  /// always increment and call this function, you risk walking off the end.
 
  df_iterator &skipChildren() {
 
    VisitStack.pop_back();
 
    if (!VisitStack.empty())
 
      toNext();
 
    return *this;
 
  }
 
 
 
  df_iterator operator++(int) { // Postincrement
 
    df_iterator tmp = *this;
 
    ++*this;
 
    return tmp;
 
  }
 
 
 
  // nodeVisited - return true if this iterator has already visited the
 
  // specified node.  This is public, and will probably be used to iterate over
 
  // nodes that a depth first iteration did not find: ie unreachable nodes.
 
  //
 
  bool nodeVisited(NodeRef Node) const {
 
    return this->Visited.contains(Node);
 
  }
 
 
 
  /// getPathLength - Return the length of the path from the entry node to the
 
  /// current node, counting both nodes.
 
  unsigned getPathLength() const { return VisitStack.size(); }
 
 
 
  /// getPath - Return the n'th node in the path from the entry node to the
 
  /// current node.
 
  NodeRef getPath(unsigned n) const { return VisitStack[n].first; }
 
};
 
 
 
// Provide global constructors that automatically figure out correct types...
 
//
 
template <class T>
 
df_iterator<T> df_begin(const T& G) {
 
  return df_iterator<T>::begin(G);
 
}
 
 
 
template <class T>
 
df_iterator<T> df_end(const T& G) {
 
  return df_iterator<T>::end(G);
 
}
 
 
 
// Provide an accessor method to use them in range-based patterns.
 
template <class T>
 
iterator_range<df_iterator<T>> depth_first(const T& G) {
 
  return make_range(df_begin(G), df_end(G));
 
}
 
 
 
// Provide global definitions of external depth first iterators...
 
template <class T, class SetTy = df_iterator_default_set<typename GraphTraits<T>::NodeRef>>
 
struct df_ext_iterator : public df_iterator<T, SetTy, true> {
 
  df_ext_iterator(const df_iterator<T, SetTy, true> &V)
 
    : df_iterator<T, SetTy, true>(V) {}
 
};
 
 
 
template <class T, class SetTy>
 
df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
 
  return df_ext_iterator<T, SetTy>::begin(G, S);
 
}
 
 
 
template <class T, class SetTy>
 
df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
 
  return df_ext_iterator<T, SetTy>::end(G, S);
 
}
 
 
 
template <class T, class SetTy>
 
iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G,
 
                                                          SetTy &S) {
 
  return make_range(df_ext_begin(G, S), df_ext_end(G, S));
 
}
 
 
 
// Provide global definitions of inverse depth first iterators...
 
template <class T,
 
          class SetTy =
 
              df_iterator_default_set<typename GraphTraits<T>::NodeRef>,
 
          bool External = false>
 
struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
 
  idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
 
    : df_iterator<Inverse<T>, SetTy, External>(V) {}
 
};
 
 
 
template <class T>
 
idf_iterator<T> idf_begin(const T& G) {
 
  return idf_iterator<T>::begin(Inverse<T>(G));
 
}
 
 
 
template <class T>
 
idf_iterator<T> idf_end(const T& G){
 
  return idf_iterator<T>::end(Inverse<T>(G));
 
}
 
 
 
// Provide an accessor method to use them in range-based patterns.
 
template <class T>
 
iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
 
  return make_range(idf_begin(G), idf_end(G));
 
}
 
 
 
// Provide global definitions of external inverse depth first iterators...
 
template <class T, class SetTy = df_iterator_default_set<typename GraphTraits<T>::NodeRef>>
 
struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
 
  idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
 
    : idf_iterator<T, SetTy, true>(V) {}
 
  idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
 
    : idf_iterator<T, SetTy, true>(V) {}
 
};
 
 
 
template <class T, class SetTy>
 
idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
 
  return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
 
}
 
 
 
template <class T, class SetTy>
 
idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
 
  return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
 
}
 
 
 
template <class T, class SetTy>
 
iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G,
 
                                                                   SetTy &S) {
 
  return make_range(idf_ext_begin(G, S), idf_ext_end(G, S));
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_DEPTHFIRSTITERATOR_H