//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file defines the DenseMap class.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_DENSEMAP_H
 
#define LLVM_ADT_DENSEMAP_H
 
 
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/ADT/EpochTracker.h"
 
#include "llvm/Support/AlignOf.h"
 
#include "llvm/Support/Compiler.h"
 
#include "llvm/Support/MathExtras.h"
 
#include "llvm/Support/MemAlloc.h"
 
#include "llvm/Support/ReverseIteration.h"
 
#include "llvm/Support/type_traits.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <cstring>
 
#include <initializer_list>
 
#include <iterator>
 
#include <new>
 
#include <type_traits>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
namespace detail {
 
 
 
// We extend a pair to allow users to override the bucket type with their own
 
// implementation without requiring two members.
 
template <typename KeyT, typename ValueT>
 
struct DenseMapPair : public std::pair<KeyT, ValueT> {
 
  using std::pair<KeyT, ValueT>::pair;
 
 
 
  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
 
  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
 
  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
 
  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
 
};
 
 
 
} // end namespace detail
 
 
 
template <typename KeyT, typename ValueT,
 
          typename KeyInfoT = DenseMapInfo<KeyT>,
 
          typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
 
          bool IsConst = false>
 
class DenseMapIterator;
 
 
 
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
 
          typename BucketT>
 
class DenseMapBase : public DebugEpochBase {
 
  template <typename T>
 
  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
 
 
 
public:
 
  using size_type = unsigned;
 
  using key_type = KeyT;
 
  using mapped_type = ValueT;
 
  using value_type = BucketT;
 
 
 
  using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
 
  using const_iterator =
 
      DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
 
 
 
  inline iterator begin() {
 
    // When the map is empty, avoid the overhead of advancing/retreating past
 
    // empty buckets.
 
    if (empty())
 
      return end();
 
    if (shouldReverseIterate<KeyT>())
 
      return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
 
    return makeIterator(getBuckets(), getBucketsEnd(), *this);
 
  }
 
  inline iterator end() {
 
    return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
 
  }
 
  inline const_iterator begin() const {
 
    if (empty())
 
      return end();
 
    if (shouldReverseIterate<KeyT>())
 
      return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
 
    return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
 
  }
 
  inline const_iterator end() const {
 
    return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
 
  }
 
 
 
  [[nodiscard]] bool empty() const { return getNumEntries() == 0; }
 
  unsigned size() const { return getNumEntries(); }
 
 
 
  /// Grow the densemap so that it can contain at least \p NumEntries items
 
  /// before resizing again.
 
  void reserve(size_type NumEntries) {
 
    auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
 
    incrementEpoch();
 
    if (NumBuckets > getNumBuckets())
 
      grow(NumBuckets);
 
  }
 
 
 
  void clear() {
 
    incrementEpoch();
 
    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
 
 
 
    // If the capacity of the array is huge, and the # elements used is small,
 
    // shrink the array.
 
    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
 
      shrink_and_clear();
 
      return;
 
    }
 
 
 
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 
    if (std::is_trivially_destructible<ValueT>::value) {
 
      // Use a simpler loop when values don't need destruction.
 
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
 
        P->getFirst() = EmptyKey;
 
    } else {
 
      unsigned NumEntries = getNumEntries();
 
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
 
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
 
          if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
 
            P->getSecond().~ValueT();
 
            --NumEntries;
 
          }
 
          P->getFirst() = EmptyKey;
 
        }
 
      }
 
      assert(NumEntries == 0 && "Node count imbalance!");
 
      (void)NumEntries;
 
    }
 
    setNumEntries(0);
 
    setNumTombstones(0);
 
  }
 
 
 
  /// Return 1 if the specified key is in the map, 0 otherwise.
 
  size_type count(const_arg_type_t<KeyT> Val) const {
 
    const BucketT *TheBucket;
 
    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
 
  }
 
 
 
  iterator find(const_arg_type_t<KeyT> Val) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Val, TheBucket))
 
      return makeIterator(TheBucket,
 
                          shouldReverseIterate<KeyT>() ? getBuckets()
 
                                                       : getBucketsEnd(),
 
                          *this, true);
 
    return end();
 
  }
 
  const_iterator find(const_arg_type_t<KeyT> Val) const {
 
    const BucketT *TheBucket;
 
    if (LookupBucketFor(Val, TheBucket))
 
      return makeConstIterator(TheBucket,
 
                               shouldReverseIterate<KeyT>() ? getBuckets()
 
                                                            : getBucketsEnd(),
 
                               *this, true);
 
    return end();
 
  }
 
 
 
  /// Alternate version of find() which allows a different, and possibly
 
  /// less expensive, key type.
 
  /// The DenseMapInfo is responsible for supplying methods
 
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
 
  /// type used.
 
  template<class LookupKeyT>
 
  iterator find_as(const LookupKeyT &Val) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Val, TheBucket))
 
      return makeIterator(TheBucket,
 
                          shouldReverseIterate<KeyT>() ? getBuckets()
 
                                                       : getBucketsEnd(),
 
                          *this, true);
 
    return end();
 
  }
 
  template<class LookupKeyT>
 
  const_iterator find_as(const LookupKeyT &Val) const {
 
    const BucketT *TheBucket;
 
    if (LookupBucketFor(Val, TheBucket))
 
      return makeConstIterator(TheBucket,
 
                               shouldReverseIterate<KeyT>() ? getBuckets()
 
                                                            : getBucketsEnd(),
 
                               *this, true);
 
    return end();
 
  }
 
 
 
  /// lookup - Return the entry for the specified key, or a default
 
  /// constructed value if no such entry exists.
 
  ValueT lookup(const_arg_type_t<KeyT> Val) const {
 
    const BucketT *TheBucket;
 
    if (LookupBucketFor(Val, TheBucket))
 
      return TheBucket->getSecond();
 
    return ValueT();
 
  }
 
 
 
  // Inserts key,value pair into the map if the key isn't already in the map.
 
  // If the key is already in the map, it returns false and doesn't update the
 
  // value.
 
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
 
    return try_emplace(KV.first, KV.second);
 
  }
 
 
 
  // Inserts key,value pair into the map if the key isn't already in the map.
 
  // If the key is already in the map, it returns false and doesn't update the
 
  // value.
 
  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
 
    return try_emplace(std::move(KV.first), std::move(KV.second));
 
  }
 
 
 
  // Inserts key,value pair into the map if the key isn't already in the map.
 
  // The value is constructed in-place if the key is not in the map, otherwise
 
  // it is not moved.
 
  template <typename... Ts>
 
  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Key, TheBucket))
 
      return std::make_pair(makeIterator(TheBucket,
 
                                         shouldReverseIterate<KeyT>()
 
                                             ? getBuckets()
 
                                             : getBucketsEnd(),
 
                                         *this, true),
 
                            false); // Already in map.
 
 
 
    // Otherwise, insert the new element.
 
    TheBucket =
 
        InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
 
    return std::make_pair(makeIterator(TheBucket,
 
                                       shouldReverseIterate<KeyT>()
 
                                           ? getBuckets()
 
                                           : getBucketsEnd(),
 
                                       *this, true),
 
                          true);
 
  }
 
 
 
  // Inserts key,value pair into the map if the key isn't already in the map.
 
  // The value is constructed in-place if the key is not in the map, otherwise
 
  // it is not moved.
 
  template <typename... Ts>
 
  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Key, TheBucket))
 
      return std::make_pair(makeIterator(TheBucket,
 
                                         shouldReverseIterate<KeyT>()
 
                                             ? getBuckets()
 
                                             : getBucketsEnd(),
 
                                         *this, true),
 
                            false); // Already in map.
 
 
 
    // Otherwise, insert the new element.
 
    TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
 
    return std::make_pair(makeIterator(TheBucket,
 
                                       shouldReverseIterate<KeyT>()
 
                                           ? getBuckets()
 
                                           : getBucketsEnd(),
 
                                       *this, true),
 
                          true);
 
  }
 
 
 
  /// Alternate version of insert() which allows a different, and possibly
 
  /// less expensive, key type.
 
  /// The DenseMapInfo is responsible for supplying methods
 
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
 
  /// type used.
 
  template <typename LookupKeyT>
 
  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
 
                                      const LookupKeyT &Val) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Val, TheBucket))
 
      return std::make_pair(makeIterator(TheBucket,
 
                                         shouldReverseIterate<KeyT>()
 
                                             ? getBuckets()
 
                                             : getBucketsEnd(),
 
                                         *this, true),
 
                            false); // Already in map.
 
 
 
    // Otherwise, insert the new element.
 
    TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
 
                                           std::move(KV.second), Val);
 
    return std::make_pair(makeIterator(TheBucket,
 
                                       shouldReverseIterate<KeyT>()
 
                                           ? getBuckets()
 
                                           : getBucketsEnd(),
 
                                       *this, true),
 
                          true);
 
  }
 
 
 
  /// insert - Range insertion of pairs.
 
  template<typename InputIt>
 
  void insert(InputIt I, InputIt E) {
 
    for (; I != E; ++I)
 
      insert(*I);
 
  }
 
 
 
  bool erase(const KeyT &Val) {
 
    BucketT *TheBucket;
 
    if (!LookupBucketFor(Val, TheBucket))
 
      return false; // not in map.
 
 
 
    TheBucket->getSecond().~ValueT();
 
    TheBucket->getFirst() = getTombstoneKey();
 
    decrementNumEntries();
 
    incrementNumTombstones();
 
    return true;
 
  }
 
  void erase(iterator I) {
 
    BucketT *TheBucket = &*I;
 
    TheBucket->getSecond().~ValueT();
 
    TheBucket->getFirst() = getTombstoneKey();
 
    decrementNumEntries();
 
    incrementNumTombstones();
 
  }
 
 
 
  value_type& FindAndConstruct(const KeyT &Key) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Key, TheBucket))
 
      return *TheBucket;
 
 
 
    return *InsertIntoBucket(TheBucket, Key);
 
  }
 
 
 
  ValueT &operator[](const KeyT &Key) {
 
    return FindAndConstruct(Key).second;
 
  }
 
 
 
  value_type& FindAndConstruct(KeyT &&Key) {
 
    BucketT *TheBucket;
 
    if (LookupBucketFor(Key, TheBucket))
 
      return *TheBucket;
 
 
 
    return *InsertIntoBucket(TheBucket, std::move(Key));
 
  }
 
 
 
  ValueT &operator[](KeyT &&Key) {
 
    return FindAndConstruct(std::move(Key)).second;
 
  }
 
 
 
  /// isPointerIntoBucketsArray - Return true if the specified pointer points
 
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
 
  /// value in the DenseMap).
 
  bool isPointerIntoBucketsArray(const void *Ptr) const {
 
    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
 
  }
 
 
 
  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
 
  /// array.  In conjunction with the previous method, this can be used to
 
  /// determine whether an insertion caused the DenseMap to reallocate.
 
  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
 
 
 
protected:
 
  DenseMapBase() = default;
 
 
 
  void destroyAll() {
 
    if (getNumBuckets() == 0) // Nothing to do.
 
      return;
 
 
 
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 
    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
 
      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
 
          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
 
        P->getSecond().~ValueT();
 
      P->getFirst().~KeyT();
 
    }
 
  }
 
 
 
  void initEmpty() {
 
    setNumEntries(0);
 
    setNumTombstones(0);
 
 
 
    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
 
           "# initial buckets must be a power of two!");
 
    const KeyT EmptyKey = getEmptyKey();
 
    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
 
      ::new (&B->getFirst()) KeyT(EmptyKey);
 
  }
 
 
 
  /// Returns the number of buckets to allocate to ensure that the DenseMap can
 
  /// accommodate \p NumEntries without need to grow().
 
  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
 
    // Ensure that "NumEntries * 4 < NumBuckets * 3"
 
    if (NumEntries == 0)
 
      return 0;
 
    // +1 is required because of the strict equality.
 
    // For example if NumEntries is 48, we need to return 401.
 
    return NextPowerOf2(NumEntries * 4 / 3 + 1);
 
  }
 
 
 
  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
 
    initEmpty();
 
 
 
    // Insert all the old elements.
 
    const KeyT EmptyKey = getEmptyKey();
 
    const KeyT TombstoneKey = getTombstoneKey();
 
    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
 
      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
 
          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
 
        // Insert the key/value into the new table.
 
        BucketT *DestBucket;
 
        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
 
        (void)FoundVal; // silence warning.
 
        assert(!FoundVal && "Key already in new map?");
 
        DestBucket->getFirst() = std::move(B->getFirst());
 
        ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
 
        incrementNumEntries();
 
 
 
        // Free the value.
 
        B->getSecond().~ValueT();
 
      }
 
      B->getFirst().~KeyT();
 
    }
 
  }
 
 
 
  template <typename OtherBaseT>
 
  void copyFrom(
 
      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
 
    assert(&other != this);
 
    assert(getNumBuckets() == other.getNumBuckets());
 
 
 
    setNumEntries(other.getNumEntries());
 
    setNumTombstones(other.getNumTombstones());
 
 
 
    if (std::is_trivially_copyable<KeyT>::value &&
 
        std::is_trivially_copyable<ValueT>::value)
 
      memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
 
             getNumBuckets() * sizeof(BucketT));
 
    else
 
      for (size_t i = 0; i < getNumBuckets(); ++i) {
 
        ::new (&getBuckets()[i].getFirst())
 
            KeyT(other.getBuckets()[i].getFirst());
 
        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
 
            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
 
          ::new (&getBuckets()[i].getSecond())
 
              ValueT(other.getBuckets()[i].getSecond());
 
      }
 
  }
 
 
 
  static unsigned getHashValue(const KeyT &Val) {
 
    return KeyInfoT::getHashValue(Val);
 
  }
 
 
 
  template<typename LookupKeyT>
 
  static unsigned getHashValue(const LookupKeyT &Val) {
 
    return KeyInfoT::getHashValue(Val);
 
  }
 
 
 
  static const KeyT getEmptyKey() {
 
    static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
 
                  "Must pass the derived type to this template!");
 
    return KeyInfoT::getEmptyKey();
 
  }
 
 
 
  static const KeyT getTombstoneKey() {
 
    return KeyInfoT::getTombstoneKey();
 
  }
 
 
 
private:
 
  iterator makeIterator(BucketT *P, BucketT *E,
 
                        DebugEpochBase &Epoch,
 
                        bool NoAdvance=false) {
 
    if (shouldReverseIterate<KeyT>()) {
 
      BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
 
      return iterator(B, E, Epoch, NoAdvance);
 
    }
 
    return iterator(P, E, Epoch, NoAdvance);
 
  }
 
 
 
  const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
 
                                   const DebugEpochBase &Epoch,
 
                                   const bool NoAdvance=false) const {
 
    if (shouldReverseIterate<KeyT>()) {
 
      const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
 
      return const_iterator(B, E, Epoch, NoAdvance);
 
    }
 
    return const_iterator(P, E, Epoch, NoAdvance);
 
  }
 
 
 
  unsigned getNumEntries() const {
 
    return static_cast<const DerivedT *>(this)->getNumEntries();
 
  }
 
 
 
  void setNumEntries(unsigned Num) {
 
    static_cast<DerivedT *>(this)->setNumEntries(Num);
 
  }
 
 
 
  void incrementNumEntries() {
 
    setNumEntries(getNumEntries() + 1);
 
  }
 
 
 
  void decrementNumEntries() {
 
    setNumEntries(getNumEntries() - 1);
 
  }
 
 
 
  unsigned getNumTombstones() const {
 
    return static_cast<const DerivedT *>(this)->getNumTombstones();
 
  }
 
 
 
  void setNumTombstones(unsigned Num) {
 
    static_cast<DerivedT *>(this)->setNumTombstones(Num);
 
  }
 
 
 
  void incrementNumTombstones() {
 
    setNumTombstones(getNumTombstones() + 1);
 
  }
 
 
 
  void decrementNumTombstones() {
 
    setNumTombstones(getNumTombstones() - 1);
 
  }
 
 
 
  const BucketT *getBuckets() const {
 
    return static_cast<const DerivedT *>(this)->getBuckets();
 
  }
 
 
 
  BucketT *getBuckets() {
 
    return static_cast<DerivedT *>(this)->getBuckets();
 
  }
 
 
 
  unsigned getNumBuckets() const {
 
    return static_cast<const DerivedT *>(this)->getNumBuckets();
 
  }
 
 
 
  BucketT *getBucketsEnd() {
 
    return getBuckets() + getNumBuckets();
 
  }
 
 
 
  const BucketT *getBucketsEnd() const {
 
    return getBuckets() + getNumBuckets();
 
  }
 
 
 
  void grow(unsigned AtLeast) {
 
    static_cast<DerivedT *>(this)->grow(AtLeast);
 
  }
 
 
 
  void shrink_and_clear() {
 
    static_cast<DerivedT *>(this)->shrink_and_clear();
 
  }
 
 
 
  template <typename KeyArg, typename... ValueArgs>
 
  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
 
                            ValueArgs &&... Values) {
 
    TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
 
 
 
    TheBucket->getFirst() = std::forward<KeyArg>(Key);
 
    ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
 
    return TheBucket;
 
  }
 
 
 
  template <typename LookupKeyT>
 
  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
 
                                      ValueT &&Value, LookupKeyT &Lookup) {
 
    TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
 
 
 
    TheBucket->getFirst() = std::move(Key);
 
    ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
 
    return TheBucket;
 
  }
 
 
 
  template <typename LookupKeyT>
 
  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
 
                                BucketT *TheBucket) {
 
    incrementEpoch();
 
 
 
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
 
    // the buckets are empty (meaning that many are filled with tombstones),
 
    // grow the table.
 
    //
 
    // The later case is tricky.  For example, if we had one empty bucket with
 
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
 
    // probe almost the entire table until it found the empty bucket.  If the
 
    // table completely filled with tombstones, no lookup would ever succeed,
 
    // causing infinite loops in lookup.
 
    unsigned NewNumEntries = getNumEntries() + 1;
 
    unsigned NumBuckets = getNumBuckets();
 
    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
 
      this->grow(NumBuckets * 2);
 
      LookupBucketFor(Lookup, TheBucket);
 
      NumBuckets = getNumBuckets();
 
    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
 
                             NumBuckets/8)) {
 
      this->grow(NumBuckets);
 
      LookupBucketFor(Lookup, TheBucket);
 
    }
 
    assert(TheBucket);
 
 
 
    // Only update the state after we've grown our bucket space appropriately
 
    // so that when growing buckets we have self-consistent entry count.
 
    incrementNumEntries();
 
 
 
    // If we are writing over a tombstone, remember this.
 
    const KeyT EmptyKey = getEmptyKey();
 
    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
 
      decrementNumTombstones();
 
 
 
    return TheBucket;
 
  }
 
 
 
  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
 
  /// FoundBucket.  If the bucket contains the key and a value, this returns
 
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
 
  /// returns false.
 
  template<typename LookupKeyT>
 
  bool LookupBucketFor(const LookupKeyT &Val,
 
                       const BucketT *&FoundBucket) const {
 
    const BucketT *BucketsPtr = getBuckets();
 
    const unsigned NumBuckets = getNumBuckets();
 
 
 
    if (NumBuckets == 0) {
 
      FoundBucket = nullptr;
 
      return false;
 
    }
 
 
 
    // FoundTombstone - Keep track of whether we find a tombstone while probing.
 
    const BucketT *FoundTombstone = nullptr;
 
    const KeyT EmptyKey = getEmptyKey();
 
    const KeyT TombstoneKey = getTombstoneKey();
 
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
 
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
 
           "Empty/Tombstone value shouldn't be inserted into map!");
 
 
 
    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
 
    unsigned ProbeAmt = 1;
 
    while (true) {
 
      const BucketT *ThisBucket = BucketsPtr + BucketNo;
 
      // Found Val's bucket?  If so, return it.
 
      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
 
        FoundBucket = ThisBucket;
 
        return true;
 
      }
 
 
 
      // If we found an empty bucket, the key doesn't exist in the set.
 
      // Insert it and return the default value.
 
      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
 
        // If we've already seen a tombstone while probing, fill it in instead
 
        // of the empty bucket we eventually probed to.
 
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
 
        return false;
 
      }
 
 
 
      // If this is a tombstone, remember it.  If Val ends up not in the map, we
 
      // prefer to return it than something that would require more probing.
 
      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
 
          !FoundTombstone)
 
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
 
 
 
      // Otherwise, it's a hash collision or a tombstone, continue quadratic
 
      // probing.
 
      BucketNo += ProbeAmt++;
 
      BucketNo &= (NumBuckets-1);
 
    }
 
  }
 
 
 
  template <typename LookupKeyT>
 
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
 
    const BucketT *ConstFoundBucket;
 
    bool Result = const_cast<const DenseMapBase *>(this)
 
      ->LookupBucketFor(Val, ConstFoundBucket);
 
    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
 
    return Result;
 
  }
 
 
 
public:
 
  /// Return the approximate size (in bytes) of the actual map.
 
  /// This is just the raw memory used by DenseMap.
 
  /// If entries are pointers to objects, the size of the referenced objects
 
  /// are not included.
 
  size_t getMemorySize() const {
 
    return getNumBuckets() * sizeof(BucketT);
 
  }
 
};
 
 
 
/// Equality comparison for DenseMap.
 
///
 
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
 
/// is also in RHS, and that no additional pairs are in RHS.
 
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
 
/// complexity is linear, worst case is O(N^2) (if every hash collides).
 
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
 
          typename BucketT>
 
bool operator==(
 
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
 
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
 
  if (LHS.size() != RHS.size())
 
    return false;
 
 
 
  for (auto &KV : LHS) {
 
    auto I = RHS.find(KV.first);
 
    if (I == RHS.end() || I->second != KV.second)
 
      return false;
 
  }
 
 
 
  return true;
 
}
 
 
 
/// Inequality comparison for DenseMap.
 
///
 
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
 
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
 
          typename BucketT>
 
bool operator!=(
 
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
 
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
 
  return !(LHS == RHS);
 
}
 
 
 
template <typename KeyT, typename ValueT,
 
          typename KeyInfoT = DenseMapInfo<KeyT>,
 
          typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
 
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
 
                                     KeyT, ValueT, KeyInfoT, BucketT> {
 
  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
 
 
 
  // Lift some types from the dependent base class into this class for
 
  // simplicity of referring to them.
 
  using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
 
 
 
  BucketT *Buckets;
 
  unsigned NumEntries;
 
  unsigned NumTombstones;
 
  unsigned NumBuckets;
 
 
 
public:
 
  /// Create a DenseMap with an optional \p InitialReserve that guarantee that
 
  /// this number of elements can be inserted in the map without grow()
 
  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
 
 
 
  DenseMap(const DenseMap &other) : BaseT() {
 
    init(0);
 
    copyFrom(other);
 
  }
 
 
 
  DenseMap(DenseMap &&other) : BaseT() {
 
    init(0);
 
    swap(other);
 
  }
 
 
 
  template<typename InputIt>
 
  DenseMap(const InputIt &I, const InputIt &E) {
 
    init(std::distance(I, E));
 
    this->insert(I, E);
 
  }
 
 
 
  DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
 
    init(Vals.size());
 
    this->insert(Vals.begin(), Vals.end());
 
  }
 
 
 
  ~DenseMap() {
 
    this->destroyAll();
 
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
 
  }
 
 
 
  void swap(DenseMap& RHS) {
 
    this->incrementEpoch();
 
    RHS.incrementEpoch();
 
    std::swap(Buckets, RHS.Buckets);
 
    std::swap(NumEntries, RHS.NumEntries);
 
    std::swap(NumTombstones, RHS.NumTombstones);
 
    std::swap(NumBuckets, RHS.NumBuckets);
 
  }
 
 
 
  DenseMap& operator=(const DenseMap& other) {
 
    if (&other != this)
 
      copyFrom(other);
 
    return *this;
 
  }
 
 
 
  DenseMap& operator=(DenseMap &&other) {
 
    this->destroyAll();
 
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
 
    init(0);
 
    swap(other);
 
    return *this;
 
  }
 
 
 
  void copyFrom(const DenseMap& other) {
 
    this->destroyAll();
 
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
 
    if (allocateBuckets(other.NumBuckets)) {
 
      this->BaseT::copyFrom(other);
 
    } else {
 
      NumEntries = 0;
 
      NumTombstones = 0;
 
    }
 
  }
 
 
 
  void init(unsigned InitNumEntries) {
 
    auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
 
    if (allocateBuckets(InitBuckets)) {
 
      this->BaseT::initEmpty();
 
    } else {
 
      NumEntries = 0;
 
      NumTombstones = 0;
 
    }
 
  }
 
 
 
  void grow(unsigned AtLeast) {
 
    unsigned OldNumBuckets = NumBuckets;
 
    BucketT *OldBuckets = Buckets;
 
 
 
    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
 
    assert(Buckets);
 
    if (!OldBuckets) {
 
      this->BaseT::initEmpty();
 
      return;
 
    }
 
 
 
    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
 
 
 
    // Free the old table.
 
    deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
 
                      alignof(BucketT));
 
  }
 
 
 
  void shrink_and_clear() {
 
    unsigned OldNumBuckets = NumBuckets;
 
    unsigned OldNumEntries = NumEntries;
 
    this->destroyAll();
 
 
 
    // Reduce the number of buckets.
 
    unsigned NewNumBuckets = 0;
 
    if (OldNumEntries)
 
      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
 
    if (NewNumBuckets == NumBuckets) {
 
      this->BaseT::initEmpty();
 
      return;
 
    }
 
 
 
    deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
 
                      alignof(BucketT));
 
    init(NewNumBuckets);
 
  }
 
 
 
private:
 
  unsigned getNumEntries() const {
 
    return NumEntries;
 
  }
 
 
 
  void setNumEntries(unsigned Num) {
 
    NumEntries = Num;
 
  }
 
 
 
  unsigned getNumTombstones() const {
 
    return NumTombstones;
 
  }
 
 
 
  void setNumTombstones(unsigned Num) {
 
    NumTombstones = Num;
 
  }
 
 
 
  BucketT *getBuckets() const {
 
    return Buckets;
 
  }
 
 
 
  unsigned getNumBuckets() const {
 
    return NumBuckets;
 
  }
 
 
 
  bool allocateBuckets(unsigned Num) {
 
    NumBuckets = Num;
 
    if (NumBuckets == 0) {
 
      Buckets = nullptr;
 
      return false;
 
    }
 
 
 
    Buckets = static_cast<BucketT *>(
 
        allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
 
    return true;
 
  }
 
};
 
 
 
template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
 
          typename KeyInfoT = DenseMapInfo<KeyT>,
 
          typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
 
class SmallDenseMap
 
    : public DenseMapBase<
 
          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
 
          ValueT, KeyInfoT, BucketT> {
 
  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
 
 
 
  // Lift some types from the dependent base class into this class for
 
  // simplicity of referring to them.
 
  using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
 
 
 
  static_assert(isPowerOf2_64(InlineBuckets),
 
                "InlineBuckets must be a power of 2.");
 
 
 
  unsigned Small : 1;
 
  unsigned NumEntries : 31;
 
  unsigned NumTombstones;
 
 
 
  struct LargeRep {
 
    BucketT *Buckets;
 
    unsigned NumBuckets;
 
  };
 
 
 
  /// A "union" of an inline bucket array and the struct representing
 
  /// a large bucket. This union will be discriminated by the 'Small' bit.
 
  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
 
 
 
public:
 
  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
 
    if (NumInitBuckets > InlineBuckets)
 
      NumInitBuckets = NextPowerOf2(NumInitBuckets - 1);
 
    init(NumInitBuckets);
 
  }
 
 
 
  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
 
    init(0);
 
    copyFrom(other);
 
  }
 
 
 
  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
 
    init(0);
 
    swap(other);
 
  }
 
 
 
  template<typename InputIt>
 
  SmallDenseMap(const InputIt &I, const InputIt &E) {
 
    init(NextPowerOf2(std::distance(I, E)));
 
    this->insert(I, E);
 
  }
 
 
 
  SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)
 
      : SmallDenseMap(Vals.begin(), Vals.end()) {}
 
 
 
  ~SmallDenseMap() {
 
    this->destroyAll();
 
    deallocateBuckets();
 
  }
 
 
 
  void swap(SmallDenseMap& RHS) {
 
    unsigned TmpNumEntries = RHS.NumEntries;
 
    RHS.NumEntries = NumEntries;
 
    NumEntries = TmpNumEntries;
 
    std::swap(NumTombstones, RHS.NumTombstones);
 
 
 
    const KeyT EmptyKey = this->getEmptyKey();
 
    const KeyT TombstoneKey = this->getTombstoneKey();
 
    if (Small && RHS.Small) {
 
      // If we're swapping inline bucket arrays, we have to cope with some of
 
      // the tricky bits of DenseMap's storage system: the buckets are not
 
      // fully initialized. Thus we swap every key, but we may have
 
      // a one-directional move of the value.
 
      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
 
        BucketT *LHSB = &getInlineBuckets()[i],
 
                *RHSB = &RHS.getInlineBuckets()[i];
 
        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
 
                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
 
        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
 
                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
 
        if (hasLHSValue && hasRHSValue) {
 
          // Swap together if we can...
 
          std::swap(*LHSB, *RHSB);
 
          continue;
 
        }
 
        // Swap separately and handle any asymmetry.
 
        std::swap(LHSB->getFirst(), RHSB->getFirst());
 
        if (hasLHSValue) {
 
          ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
 
          LHSB->getSecond().~ValueT();
 
        } else if (hasRHSValue) {
 
          ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
 
          RHSB->getSecond().~ValueT();
 
        }
 
      }
 
      return;
 
    }
 
    if (!Small && !RHS.Small) {
 
      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
 
      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
 
      return;
 
    }
 
 
 
    SmallDenseMap &SmallSide = Small ? *this : RHS;
 
    SmallDenseMap &LargeSide = Small ? RHS : *this;
 
 
 
    // First stash the large side's rep and move the small side across.
 
    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
 
    LargeSide.getLargeRep()->~LargeRep();
 
    LargeSide.Small = true;
 
    // This is similar to the standard move-from-old-buckets, but the bucket
 
    // count hasn't actually rotated in this case. So we have to carefully
 
    // move construct the keys and values into their new locations, but there
 
    // is no need to re-hash things.
 
    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
 
      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
 
              *OldB = &SmallSide.getInlineBuckets()[i];
 
      ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
 
      OldB->getFirst().~KeyT();
 
      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
 
          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
 
        ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
 
        OldB->getSecond().~ValueT();
 
      }
 
    }
 
 
 
    // The hard part of moving the small buckets across is done, just move
 
    // the TmpRep into its new home.
 
    SmallSide.Small = false;
 
    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
 
  }
 
 
 
  SmallDenseMap& operator=(const SmallDenseMap& other) {
 
    if (&other != this)
 
      copyFrom(other);
 
    return *this;
 
  }
 
 
 
  SmallDenseMap& operator=(SmallDenseMap &&other) {
 
    this->destroyAll();
 
    deallocateBuckets();
 
    init(0);
 
    swap(other);
 
    return *this;
 
  }
 
 
 
  void copyFrom(const SmallDenseMap& other) {
 
    this->destroyAll();
 
    deallocateBuckets();
 
    Small = true;
 
    if (other.getNumBuckets() > InlineBuckets) {
 
      Small = false;
 
      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
 
    }
 
    this->BaseT::copyFrom(other);
 
  }
 
 
 
  void init(unsigned InitBuckets) {
 
    Small = true;
 
    if (InitBuckets > InlineBuckets) {
 
      Small = false;
 
      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
 
    }
 
    this->BaseT::initEmpty();
 
  }
 
 
 
  void grow(unsigned AtLeast) {
 
    if (AtLeast > InlineBuckets)
 
      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
 
 
 
    if (Small) {
 
      // First move the inline buckets into a temporary storage.
 
      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
 
      BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage);
 
      BucketT *TmpEnd = TmpBegin;
 
 
 
      // Loop over the buckets, moving non-empty, non-tombstones into the
 
      // temporary storage. Have the loop move the TmpEnd forward as it goes.
 
      const KeyT EmptyKey = this->getEmptyKey();
 
      const KeyT TombstoneKey = this->getTombstoneKey();
 
      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
 
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
 
            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
 
          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
 
                 "Too many inline buckets!");
 
          ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
 
          ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
 
          ++TmpEnd;
 
          P->getSecond().~ValueT();
 
        }
 
        P->getFirst().~KeyT();
 
      }
 
 
 
      // AtLeast == InlineBuckets can happen if there are many tombstones,
 
      // and grow() is used to remove them. Usually we always switch to the
 
      // large rep here.
 
      if (AtLeast > InlineBuckets) {
 
        Small = false;
 
        new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
 
      }
 
      this->moveFromOldBuckets(TmpBegin, TmpEnd);
 
      return;
 
    }
 
 
 
    LargeRep OldRep = std::move(*getLargeRep());
 
    getLargeRep()->~LargeRep();
 
    if (AtLeast <= InlineBuckets) {
 
      Small = true;
 
    } else {
 
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
 
    }
 
 
 
    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
 
 
 
    // Free the old table.
 
    deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
 
                      alignof(BucketT));
 
  }
 
 
 
  void shrink_and_clear() {
 
    unsigned OldSize = this->size();
 
    this->destroyAll();
 
 
 
    // Reduce the number of buckets.
 
    unsigned NewNumBuckets = 0;
 
    if (OldSize) {
 
      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
 
      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
 
        NewNumBuckets = 64;
 
    }
 
    if ((Small && NewNumBuckets <= InlineBuckets) ||
 
        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
 
      this->BaseT::initEmpty();
 
      return;
 
    }
 
 
 
    deallocateBuckets();
 
    init(NewNumBuckets);
 
  }
 
 
 
private:
 
  unsigned getNumEntries() const {
 
    return NumEntries;
 
  }
 
 
 
  void setNumEntries(unsigned Num) {
 
    // NumEntries is hardcoded to be 31 bits wide.
 
    assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
 
    NumEntries = Num;
 
  }
 
 
 
  unsigned getNumTombstones() const {
 
    return NumTombstones;
 
  }
 
 
 
  void setNumTombstones(unsigned Num) {
 
    NumTombstones = Num;
 
  }
 
 
 
  const BucketT *getInlineBuckets() const {
 
    assert(Small);
 
    // Note that this cast does not violate aliasing rules as we assert that
 
    // the memory's dynamic type is the small, inline bucket buffer, and the
 
    // 'storage' is a POD containing a char buffer.
 
    return reinterpret_cast<const BucketT *>(&storage);
 
  }
 
 
 
  BucketT *getInlineBuckets() {
 
    return const_cast<BucketT *>(
 
      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
 
  }
 
 
 
  const LargeRep *getLargeRep() const {
 
    assert(!Small);
 
    // Note, same rule about aliasing as with getInlineBuckets.
 
    return reinterpret_cast<const LargeRep *>(&storage);
 
  }
 
 
 
  LargeRep *getLargeRep() {
 
    return const_cast<LargeRep *>(
 
      const_cast<const SmallDenseMap *>(this)->getLargeRep());
 
  }
 
 
 
  const BucketT *getBuckets() const {
 
    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
 
  }
 
 
 
  BucketT *getBuckets() {
 
    return const_cast<BucketT *>(
 
      const_cast<const SmallDenseMap *>(this)->getBuckets());
 
  }
 
 
 
  unsigned getNumBuckets() const {
 
    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
 
  }
 
 
 
  void deallocateBuckets() {
 
    if (Small)
 
      return;
 
 
 
    deallocate_buffer(getLargeRep()->Buckets,
 
                      sizeof(BucketT) * getLargeRep()->NumBuckets,
 
                      alignof(BucketT));
 
    getLargeRep()->~LargeRep();
 
  }
 
 
 
  LargeRep allocateBuckets(unsigned Num) {
 
    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
 
    LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
 
                        sizeof(BucketT) * Num, alignof(BucketT))),
 
                    Num};
 
    return Rep;
 
  }
 
};
 
 
 
template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
 
          bool IsConst>
 
class DenseMapIterator : DebugEpochBase::HandleBase {
 
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
 
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
 
 
 
public:
 
  using difference_type = ptrdiff_t;
 
  using value_type = std::conditional_t<IsConst, const Bucket, Bucket>;
 
  using pointer = value_type *;
 
  using reference = value_type &;
 
  using iterator_category = std::forward_iterator_tag;
 
 
 
private:
 
  pointer Ptr = nullptr;
 
  pointer End = nullptr;
 
 
 
public:
 
  DenseMapIterator() = default;
 
 
 
  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
 
                   bool NoAdvance = false)
 
      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
 
    assert(isHandleInSync() && "invalid construction!");
 
 
 
    if (NoAdvance) return;
 
    if (shouldReverseIterate<KeyT>()) {
 
      RetreatPastEmptyBuckets();
 
      return;
 
    }
 
    AdvancePastEmptyBuckets();
 
  }
 
 
 
  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
 
  // for const iterator destinations so it doesn't end up as a user defined copy
 
  // constructor.
 
  template <bool IsConstSrc,
 
            typename = std::enable_if_t<!IsConstSrc && IsConst>>
 
  DenseMapIterator(
 
      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
 
      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
 
 
 
  reference operator*() const {
 
    assert(isHandleInSync() && "invalid iterator access!");
 
    assert(Ptr != End && "dereferencing end() iterator");
 
    if (shouldReverseIterate<KeyT>())
 
      return Ptr[-1];
 
    return *Ptr;
 
  }
 
  pointer operator->() const {
 
    assert(isHandleInSync() && "invalid iterator access!");
 
    assert(Ptr != End && "dereferencing end() iterator");
 
    if (shouldReverseIterate<KeyT>())
 
      return &(Ptr[-1]);
 
    return Ptr;
 
  }
 
 
 
  friend bool operator==(const DenseMapIterator &LHS,
 
                         const DenseMapIterator &RHS) {
 
    assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!");
 
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
 
    assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&
 
           "comparing incomparable iterators!");
 
    return LHS.Ptr == RHS.Ptr;
 
  }
 
 
 
  friend bool operator!=(const DenseMapIterator &LHS,
 
                         const DenseMapIterator &RHS) {
 
    return !(LHS == RHS);
 
  }
 
 
 
  inline DenseMapIterator& operator++() {  // Preincrement
 
    assert(isHandleInSync() && "invalid iterator access!");
 
    assert(Ptr != End && "incrementing end() iterator");
 
    if (shouldReverseIterate<KeyT>()) {
 
      --Ptr;
 
      RetreatPastEmptyBuckets();
 
      return *this;
 
    }
 
    ++Ptr;
 
    AdvancePastEmptyBuckets();
 
    return *this;
 
  }
 
  DenseMapIterator operator++(int) {  // Postincrement
 
    assert(isHandleInSync() && "invalid iterator access!");
 
    DenseMapIterator tmp = *this; ++*this; return tmp;
 
  }
 
 
 
private:
 
  void AdvancePastEmptyBuckets() {
 
    assert(Ptr <= End);
 
    const KeyT Empty = KeyInfoT::getEmptyKey();
 
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 
 
 
    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
 
                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
 
      ++Ptr;
 
  }
 
 
 
  void RetreatPastEmptyBuckets() {
 
    assert(Ptr >= End);
 
    const KeyT Empty = KeyInfoT::getEmptyKey();
 
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 
 
 
    while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
 
                          KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
 
      --Ptr;
 
  }
 
};
 
 
 
template <typename KeyT, typename ValueT, typename KeyInfoT>
 
inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
 
  return X.getMemorySize();
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_DENSEMAP_H