//===-- llvm/ADT/CombinationGenerator.h ------------------------*- C++ -*--===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// Combination generator.
 
///
 
/// Example: given input {{0, 1}, {2}, {3, 4}} it will produce the following
 
/// combinations: {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {1, 2, 4}.
 
///
 
/// It is useful to think of input as vector-of-vectors, where the
 
/// outer vector is the variable space, and inner vector is choice space.
 
/// The number of choices for each variable can be different.
 
///
 
/// As for implementation, it is useful to think of this as a weird number,
 
/// where each digit (==variable) may have different base (==number of choices).
 
/// Thus modelling of 'produce next combination' is exactly analogous to the
 
/// incrementing of an number - increment lowest digit (pick next choice for the
 
/// variable), and if it wrapped to the beginning then increment next digit.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_COMBINATIONGENERATOR_H
 
#define LLVM_ADT_COMBINATIONGENERATOR_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/STLFunctionalExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include <cassert>
 
#include <cstring>
 
 
 
namespace llvm {
 
 
 
template <typename choice_type, typename choices_storage_type,
 
          int variable_smallsize>
 
class CombinationGenerator {
 
  template <typename T> struct WrappingIterator {
 
    using value_type = T;
 
 
 
    const ArrayRef<value_type> Range;
 
    typename decltype(Range)::const_iterator Position;
 
 
 
    // Rewind the tape, placing the position to again point at the beginning.
 
    void rewind() { Position = Range.begin(); }
 
 
 
    // Advance position forward, possibly wrapping to the beginning.
 
    // Returns whether the wrap happened.
 
    bool advance() {
 
      ++Position;
 
      bool Wrapped = Position == Range.end();
 
      if (Wrapped)
 
        rewind();
 
      return Wrapped;
 
    }
 
 
 
    // Get the value at which we are currently pointing.
 
    const value_type &operator*() const { return *Position; }
 
 
 
    WrappingIterator(ArrayRef<value_type> Range_) : Range(Range_) {
 
      assert(!Range.empty() && "The range must not be empty.");
 
      rewind();
 
    }
 
  };
 
 
 
  const ArrayRef<choices_storage_type> VariablesChoices;
 
 
 
  void performGeneration(
 
      const function_ref<bool(ArrayRef<choice_type>)> Callback) const {
 
    SmallVector<WrappingIterator<choice_type>, variable_smallsize>
 
        VariablesState;
 
 
 
    // 'increment' of the the whole VariablesState is defined identically to the
 
    // increment of a number: starting from the least significant element,
 
    // increment it, and if it wrapped, then propagate that carry by also
 
    // incrementing next (more significant) element.
 
    auto IncrementState =
 
        [](MutableArrayRef<WrappingIterator<choice_type>> VariablesState)
 
        -> bool {
 
      for (WrappingIterator<choice_type> &Variable :
 
           llvm::reverse(VariablesState)) {
 
        bool Wrapped = Variable.advance();
 
        if (!Wrapped)
 
          return false; // There you go, next combination is ready.
 
        // We have carry - increment more significant variable next..
 
      }
 
      return true; // MSB variable wrapped, no more unique combinations.
 
    };
 
 
 
    // Initialize the per-variable state to refer to the possible choices for
 
    // that variable.
 
    VariablesState.reserve(VariablesChoices.size());
 
    for (ArrayRef<choice_type> VC : VariablesChoices)
 
      VariablesState.emplace_back(VC);
 
 
 
    // Temporary buffer to store each combination before performing Callback.
 
    SmallVector<choice_type, variable_smallsize> CurrentCombination;
 
    CurrentCombination.resize(VariablesState.size());
 
 
 
    while (true) {
 
      // Gather the currently-selected variable choices into a vector.
 
      for (auto I : llvm::zip(VariablesState, CurrentCombination))
 
        std::get<1>(I) = *std::get<0>(I);
 
      // And pass the new combination into callback, as intended.
 
      if (/*Abort=*/Callback(CurrentCombination))
 
        return;
 
      // And tick the state to next combination, which will be unique.
 
      if (IncrementState(VariablesState))
 
        return; // All combinations produced.
 
    }
 
  };
 
 
 
public:
 
  CombinationGenerator(ArrayRef<choices_storage_type> VariablesChoices_)
 
      : VariablesChoices(VariablesChoices_) {
 
#ifndef NDEBUG
 
    assert(!VariablesChoices.empty() && "There should be some variables.");
 
    llvm::for_each(VariablesChoices, [](ArrayRef<choice_type> VariableChoices) {
 
      assert(!VariableChoices.empty() &&
 
             "There must always be some choice, at least a placeholder one.");
 
    });
 
#endif
 
  }
 
 
 
  // How many combinations can we produce, max?
 
  // This is at most how many times the callback will be called.
 
  size_t numCombinations() const {
 
    size_t NumVariants = 1;
 
    for (ArrayRef<choice_type> VariableChoices : VariablesChoices)
 
      NumVariants *= VariableChoices.size();
 
    assert(NumVariants >= 1 &&
 
           "We should always end up producing at least one combination");
 
    return NumVariants;
 
  }
 
 
 
  // Actually perform exhaustive combination generation.
 
  // Each result will be passed into the callback.
 
  void generate(const function_ref<bool(ArrayRef<choice_type>)> Callback) {
 
    performGeneration(Callback);
 
  }
 
};
 
 
 
} // namespace llvm
 
 
 
#endif