Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. ///
  9. /// \file
  10. /// This file implements methods to test, set and extract typed bits from packed
  11. /// unsigned integers.
  12. ///
  13. /// Why not C++ bitfields?
  14. /// ----------------------
  15. /// C++ bitfields do not offer control over the bit layout nor consistent
  16. /// behavior when it comes to out of range values.
  17. /// For instance, the layout is implementation defined and adjacent bits may be
  18. /// packed together but are not required to. This is problematic when storage is
  19. /// sparse and data must be stored in a particular integer type.
  20. ///
  21. /// The methods provided in this file ensure precise control over the
  22. /// layout/storage as well as protection against out of range values.
  23. ///
  24. /// Usage example
  25. /// -------------
  26. /// \code{.cpp}
  27. ///  uint8_t Storage = 0;
  28. ///
  29. ///  // Store and retrieve a single bit as bool.
  30. ///  using Bool = Bitfield::Element<bool, 0, 1>;
  31. ///  Bitfield::set<Bool>(Storage, true);
  32. ///  EXPECT_EQ(Storage, 0b00000001);
  33. ///  //                          ^
  34. ///  EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
  35. ///
  36. ///  // Store and retrieve a 2 bit typed enum.
  37. ///  // Note: enum underlying type must be unsigned.
  38. ///  enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES };
  39. ///  // Note: enum maximum value needs to be passed in as last parameter.
  40. ///  using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>;
  41. ///  Bitfield::set<Suit>(Storage, SuitEnum::HEARTS);
  42. ///  EXPECT_EQ(Storage, 0b00000101);
  43. ///  //                        ^^
  44. ///  EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS);
  45. ///
  46. ///  // Store and retrieve a 5 bit value as unsigned.
  47. ///  using Value = Bitfield::Element<unsigned, 3, 5>;
  48. ///  Bitfield::set<Value>(Storage, 10);
  49. ///  EXPECT_EQ(Storage, 0b01010101);
  50. ///  //                   ^^^^^
  51. ///  EXPECT_EQ(Bitfield::get<Value>(Storage), 10U);
  52. ///
  53. ///  // Interpret the same 5 bit value as signed.
  54. ///  using SignedValue = Bitfield::Element<int, 3, 5>;
  55. ///  Bitfield::set<SignedValue>(Storage, -2);
  56. ///  EXPECT_EQ(Storage, 0b11110101);
  57. ///  //                   ^^^^^
  58. ///  EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2);
  59. ///
  60. ///  // Ability to efficiently test if a field is non zero.
  61. ///  EXPECT_TRUE(Bitfield::test<Value>(Storage));
  62. ///
  63. ///  // Alter Storage changes value.
  64. ///  Storage = 0;
  65. ///  EXPECT_EQ(Bitfield::get<Bool>(Storage), false);
  66. ///  EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS);
  67. ///  EXPECT_EQ(Bitfield::get<Value>(Storage), 0U);
  68. ///  EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0);
  69. ///
  70. ///  Storage = 255;
  71. ///  EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
  72. ///  EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES);
  73. ///  EXPECT_EQ(Bitfield::get<Value>(Storage), 31U);
  74. ///  EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1);
  75. /// \endcode
  76. ///
  77. //===----------------------------------------------------------------------===//
  78.  
  79. #ifndef LLVM_ADT_BITFIELDS_H
  80. #define LLVM_ADT_BITFIELDS_H
  81.  
  82. #include <cassert>
  83. #include <climits> // CHAR_BIT
  84. #include <cstddef> // size_t
  85. #include <cstdint> // uintXX_t
  86. #include <limits>  // numeric_limits
  87. #include <type_traits>
  88.  
  89. namespace llvm {
  90.  
  91. namespace bitfields_details {
  92.  
  93. /// A struct defining useful bit patterns for n-bits integer types.
  94. template <typename T, unsigned Bits> struct BitPatterns {
  95.   /// Bit patterns are forged using the equivalent `Unsigned` type because of
  96.   /// undefined operations over signed types (e.g. Bitwise shift operators).
  97.   /// Moreover same size casting from unsigned to signed is well defined but not
  98.   /// the other way around.
  99.   using Unsigned = std::make_unsigned_t<T>;
  100.   static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size");
  101.  
  102.   static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT;
  103.   static_assert(TypeBits >= Bits, "n-bit must fit in T");
  104.  
  105.   /// e.g. with TypeBits == 8 and Bits == 6.
  106.   static constexpr Unsigned AllZeros = Unsigned(0);                  // 00000000
  107.   static constexpr Unsigned AllOnes = ~Unsigned(0);                  // 11111111
  108.   static constexpr Unsigned Umin = AllZeros;                         // 00000000
  109.   static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits);     // 00111111
  110.   static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000
  111.   static constexpr Unsigned Smax = Umax >> 1U;                       // 00011111
  112.   static constexpr Unsigned Smin = ~Smax;                            // 11100000
  113.   static constexpr Unsigned SignExtend = Unsigned(Smin << 1U);       // 11000000
  114. };
  115.  
  116. /// `Compressor` is used to manipulate the bits of a (possibly signed) integer
  117. /// type so it can be packed and unpacked into a `bits` sized integer,
  118. /// `Compressor` is specialized on signed-ness so no runtime cost is incurred.
  119. /// The `pack` method also checks that the passed in `UserValue` is valid.
  120. template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value>
  121. struct Compressor {
  122.   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
  123.   using BP = BitPatterns<T, Bits>;
  124.  
  125.   static T pack(T UserValue, T UserMaxValue) {
  126.     assert(UserValue <= UserMaxValue && "value is too big");
  127.     assert(UserValue <= BP::Umax && "value is too big");
  128.     return UserValue;
  129.   }
  130.  
  131.   static T unpack(T StorageValue) { return StorageValue; }
  132. };
  133.  
  134. template <typename T, unsigned Bits> struct Compressor<T, Bits, false> {
  135.   static_assert(std::is_signed<T>::value, "T must be signed");
  136.   using BP = BitPatterns<T, Bits>;
  137.  
  138.   static T pack(T UserValue, T UserMaxValue) {
  139.     assert(UserValue <= UserMaxValue && "value is too big");
  140.     assert(UserValue <= T(BP::Smax) && "value is too big");
  141.     assert(UserValue >= T(BP::Smin) && "value is too small");
  142.     if (UserValue < 0)
  143.       UserValue &= ~BP::SignExtend;
  144.     return UserValue;
  145.   }
  146.  
  147.   static T unpack(T StorageValue) {
  148.     if (StorageValue >= T(BP::SignBitMask))
  149.       StorageValue |= BP::SignExtend;
  150.     return StorageValue;
  151.   }
  152. };
  153.  
  154. /// Impl is where Bifield description and Storage are put together to interact
  155. /// with values.
  156. template <typename Bitfield, typename StorageType> struct Impl {
  157.   static_assert(std::is_unsigned<StorageType>::value,
  158.                 "Storage must be unsigned");
  159.   using IntegerType = typename Bitfield::IntegerType;
  160.   using C = Compressor<IntegerType, Bitfield::Bits>;
  161.   using BP = BitPatterns<StorageType, Bitfield::Bits>;
  162.  
  163.   static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT;
  164.   static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask");
  165.   static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask");
  166.   static constexpr StorageType Mask = BP::Umax << Bitfield::Shift;
  167.  
  168.   /// Checks `UserValue` is within bounds and packs it between `FirstBit` and
  169.   /// `LastBit` of `Packed` leaving the rest unchanged.
  170.   static void update(StorageType &Packed, IntegerType UserValue) {
  171.     const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue);
  172.     Packed &= ~Mask;
  173.     Packed |= StorageValue << Bitfield::Shift;
  174.   }
  175.  
  176.   /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
  177.   /// an`IntegerType`.
  178.   static IntegerType extract(StorageType Packed) {
  179.     const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift;
  180.     return C::unpack(StorageValue);
  181.   }
  182.  
  183.   /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
  184.   /// an`IntegerType`.
  185.   static StorageType test(StorageType Packed) { return Packed & Mask; }
  186. };
  187.  
  188. /// `Bitfield` deals with the following type:
  189. /// - unsigned enums
  190. /// - signed and unsigned integer
  191. /// - `bool`
  192. /// Internally though we only manipulate integer with well defined and
  193. /// consistent semantics, this excludes typed enums and `bool` that are replaced
  194. /// with their unsigned counterparts. The correct type is restored in the public
  195. /// API.
  196. template <typename T, bool = std::is_enum<T>::value>
  197. struct ResolveUnderlyingType {
  198.   using type = std::underlying_type_t<T>;
  199. };
  200. template <typename T> struct ResolveUnderlyingType<T, false> {
  201.   using type = T;
  202. };
  203. template <> struct ResolveUnderlyingType<bool, false> {
  204.   /// In case sizeof(bool) != 1, replace `void` by an additionnal
  205.   /// std::conditional.
  206.   using type = std::conditional_t<sizeof(bool) == 1, uint8_t, void>;
  207. };
  208.  
  209. } // namespace bitfields_details
  210.  
  211. /// Holds functions to get, set or test bitfields.
  212. struct Bitfield {
  213.   /// Describes an element of a Bitfield. This type is then used with the
  214.   /// Bitfield static member functions.
  215.   /// \tparam T         The type of the field once in unpacked form.
  216.   /// \tparam Offset    The position of the first bit.
  217.   /// \tparam Size      The size of the field.
  218.   /// \tparam MaxValue  For enums the maximum enum allowed.
  219.   template <typename T, unsigned Offset, unsigned Size,
  220.             T MaxValue = std::is_enum<T>::value
  221.                              ? T(0) // coupled with static_assert below
  222.                              : std::numeric_limits<T>::max()>
  223.   struct Element {
  224.     using Type = T;
  225.     using IntegerType =
  226.         typename bitfields_details::ResolveUnderlyingType<T>::type;
  227.     static constexpr unsigned Shift = Offset;
  228.     static constexpr unsigned Bits = Size;
  229.     static constexpr unsigned FirstBit = Offset;
  230.     static constexpr unsigned LastBit = Shift + Bits - 1;
  231.     static constexpr unsigned NextBit = Shift + Bits;
  232.  
  233.   private:
  234.     template <typename, typename> friend struct bitfields_details::Impl;
  235.  
  236.     static_assert(Bits > 0, "Bits must be non zero");
  237.     static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT;
  238.     static_assert(Bits <= TypeBits, "Bits may not be greater than T size");
  239.     static_assert(!std::is_enum<T>::value || MaxValue != T(0),
  240.                   "Enum Bitfields must provide a MaxValue");
  241.     static_assert(!std::is_enum<T>::value ||
  242.                       std::is_unsigned<IntegerType>::value,
  243.                   "Enum must be unsigned");
  244.     static_assert(std::is_integral<IntegerType>::value &&
  245.                       std::numeric_limits<IntegerType>::is_integer,
  246.                   "IntegerType must be an integer type");
  247.  
  248.     static constexpr IntegerType UserMaxValue =
  249.         static_cast<IntegerType>(MaxValue);
  250.   };
  251.  
  252.   /// Unpacks the field from the `Packed` value.
  253.   template <typename Bitfield, typename StorageType>
  254.   static typename Bitfield::Type get(StorageType Packed) {
  255.     using I = bitfields_details::Impl<Bitfield, StorageType>;
  256.     return static_cast<typename Bitfield::Type>(I::extract(Packed));
  257.   }
  258.  
  259.   /// Return a non-zero value if the field is non-zero.
  260.   /// It is more efficient than `getField`.
  261.   template <typename Bitfield, typename StorageType>
  262.   static StorageType test(StorageType Packed) {
  263.     using I = bitfields_details::Impl<Bitfield, StorageType>;
  264.     return I::test(Packed);
  265.   }
  266.  
  267.   /// Sets the typed value in the provided `Packed` value.
  268.   /// The method will asserts if the provided value is too big to fit in.
  269.   template <typename Bitfield, typename StorageType>
  270.   static void set(StorageType &Packed, typename Bitfield::Type Value) {
  271.     using I = bitfields_details::Impl<Bitfield, StorageType>;
  272.     I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value));
  273.   }
  274.  
  275.   /// Returns whether the two bitfields share common bits.
  276.   template <typename A, typename B> static constexpr bool isOverlapping() {
  277.     return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit;
  278.   }
  279.  
  280.   template <typename A> static constexpr bool areContiguous() { return true; }
  281.   template <typename A, typename B, typename... Others>
  282.   static constexpr bool areContiguous() {
  283.     return A::NextBit == B::FirstBit && areContiguous<B, Others...>();
  284.   }
  285. };
  286.  
  287. } // namespace llvm
  288.  
  289. #endif // LLVM_ADT_BITFIELDS_H
  290.