//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file implements the BitVector class.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_BITVECTOR_H
 
#define LLVM_ADT_BITVECTOR_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMapInfo.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Support/MathExtras.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <climits>
 
#include <cstdint>
 
#include <cstdlib>
 
#include <cstring>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
/// ForwardIterator for the bits that are set.
 
/// Iterators get invalidated when resize / reserve is called.
 
template <typename BitVectorT> class const_set_bits_iterator_impl {
 
  const BitVectorT &Parent;
 
  int Current = 0;
 
 
 
  void advance() {
 
    assert(Current != -1 && "Trying to advance past end.");
 
    Current = Parent.find_next(Current);
 
  }
 
 
 
public:
 
  const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
 
      : Parent(Parent), Current(Current) {}
 
  explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
 
      : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
 
  const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
 
 
 
  const_set_bits_iterator_impl operator++(int) {
 
    auto Prev = *this;
 
    advance();
 
    return Prev;
 
  }
 
 
 
  const_set_bits_iterator_impl &operator++() {
 
    advance();
 
    return *this;
 
  }
 
 
 
  unsigned operator*() const { return Current; }
 
 
 
  bool operator==(const const_set_bits_iterator_impl &Other) const {
 
    assert(&Parent == &Other.Parent &&
 
           "Comparing iterators from different BitVectors");
 
    return Current == Other.Current;
 
  }
 
 
 
  bool operator!=(const const_set_bits_iterator_impl &Other) const {
 
    assert(&Parent == &Other.Parent &&
 
           "Comparing iterators from different BitVectors");
 
    return Current != Other.Current;
 
  }
 
};
 
 
 
class BitVector {
 
  typedef uintptr_t BitWord;
 
 
 
  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
 
 
 
  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
 
                "Unsupported word size");
 
 
 
  using Storage = SmallVector<BitWord>;
 
 
 
  Storage Bits;  // Actual bits.
 
  unsigned Size = 0; // Size of bitvector in bits.
 
 
 
public:
 
  using size_type = unsigned;
 
 
 
  // Encapsulation of a single bit.
 
  class reference {
 
 
 
    BitWord *WordRef;
 
    unsigned BitPos;
 
 
 
  public:
 
    reference(BitVector &b, unsigned Idx) {
 
      WordRef = &b.Bits[Idx / BITWORD_SIZE];
 
      BitPos = Idx % BITWORD_SIZE;
 
    }
 
 
 
    reference() = delete;
 
    reference(const reference&) = default;
 
 
 
    reference &operator=(reference t) {
 
      *this = bool(t);
 
      return *this;
 
    }
 
 
 
    reference& operator=(bool t) {
 
      if (t)
 
        *WordRef |= BitWord(1) << BitPos;
 
      else
 
        *WordRef &= ~(BitWord(1) << BitPos);
 
      return *this;
 
    }
 
 
 
    operator bool() const {
 
      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
 
    }
 
  };
 
 
 
  typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
 
  typedef const_set_bits_iterator set_iterator;
 
 
 
  const_set_bits_iterator set_bits_begin() const {
 
    return const_set_bits_iterator(*this);
 
  }
 
  const_set_bits_iterator set_bits_end() const {
 
    return const_set_bits_iterator(*this, -1);
 
  }
 
  iterator_range<const_set_bits_iterator> set_bits() const {
 
    return make_range(set_bits_begin(), set_bits_end());
 
  }
 
 
 
  /// BitVector default ctor - Creates an empty bitvector.
 
  BitVector() = default;
 
 
 
  /// BitVector ctor - Creates a bitvector of specified number of bits. All
 
  /// bits are initialized to the specified value.
 
  explicit BitVector(unsigned s, bool t = false)
 
      : Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) {
 
    if (t)
 
      clear_unused_bits();
 
  }
 
 
 
  /// empty - Tests whether there are no bits in this bitvector.
 
  bool empty() const { return Size == 0; }
 
 
 
  /// size - Returns the number of bits in this bitvector.
 
  size_type size() const { return Size; }
 
 
 
  /// count - Returns the number of bits which are set.
 
  size_type count() const {
 
    unsigned NumBits = 0;
 
    for (auto Bit : Bits)
 
      NumBits += llvm::popcount(Bit);
 
    return NumBits;
 
  }
 
 
 
  /// any - Returns true if any bit is set.
 
  bool any() const {
 
    return any_of(Bits, [](BitWord Bit) { return Bit != 0; });
 
  }
 
 
 
  /// all - Returns true if all bits are set.
 
  bool all() const {
 
    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
 
      if (Bits[i] != ~BitWord(0))
 
        return false;
 
 
 
    // If bits remain check that they are ones. The unused bits are always zero.
 
    if (unsigned Remainder = Size % BITWORD_SIZE)
 
      return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
 
 
 
    return true;
 
  }
 
 
 
  /// none - Returns true if none of the bits are set.
 
  bool none() const {
 
    return !any();
 
  }
 
 
 
  /// find_first_in - Returns the index of the first set / unset bit,
 
  /// depending on \p Set, in the range [Begin, End).
 
  /// Returns -1 if all bits in the range are unset / set.
 
  int find_first_in(unsigned Begin, unsigned End, bool Set = true) const {
 
    assert(Begin <= End && End <= Size);
 
    if (Begin == End)
 
      return -1;
 
 
 
    unsigned FirstWord = Begin / BITWORD_SIZE;
 
    unsigned LastWord = (End - 1) / BITWORD_SIZE;
 
 
 
    // Check subsequent words.
 
    // The code below is based on search for the first _set_ bit. If
 
    // we're searching for the first _unset_, we just take the
 
    // complement of each word before we use it and apply
 
    // the same method.
 
    for (unsigned i = FirstWord; i <= LastWord; ++i) {
 
      BitWord Copy = Bits[i];
 
      if (!Set)
 
        Copy = ~Copy;
 
 
 
      if (i == FirstWord) {
 
        unsigned FirstBit = Begin % BITWORD_SIZE;
 
        Copy &= maskTrailingZeros<BitWord>(FirstBit);
 
      }
 
 
 
      if (i == LastWord) {
 
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
 
        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
 
      }
 
      if (Copy != 0)
 
        return i * BITWORD_SIZE + countTrailingZeros(Copy);
 
    }
 
    return -1;
 
  }
 
 
 
  /// find_last_in - Returns the index of the last set bit in the range
 
  /// [Begin, End).  Returns -1 if all bits in the range are unset.
 
  int find_last_in(unsigned Begin, unsigned End) const {
 
    assert(Begin <= End && End <= Size);
 
    if (Begin == End)
 
      return -1;
 
 
 
    unsigned LastWord = (End - 1) / BITWORD_SIZE;
 
    unsigned FirstWord = Begin / BITWORD_SIZE;
 
 
 
    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
 
      unsigned CurrentWord = i - 1;
 
 
 
      BitWord Copy = Bits[CurrentWord];
 
      if (CurrentWord == LastWord) {
 
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
 
        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
 
      }
 
 
 
      if (CurrentWord == FirstWord) {
 
        unsigned FirstBit = Begin % BITWORD_SIZE;
 
        Copy &= maskTrailingZeros<BitWord>(FirstBit);
 
      }
 
 
 
      if (Copy != 0)
 
        return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
 
    }
 
 
 
    return -1;
 
  }
 
 
 
  /// find_first_unset_in - Returns the index of the first unset bit in the
 
  /// range [Begin, End).  Returns -1 if all bits in the range are set.
 
  int find_first_unset_in(unsigned Begin, unsigned End) const {
 
    return find_first_in(Begin, End, /* Set = */ false);
 
  }
 
 
 
  /// find_last_unset_in - Returns the index of the last unset bit in the
 
  /// range [Begin, End).  Returns -1 if all bits in the range are set.
 
  int find_last_unset_in(unsigned Begin, unsigned End) const {
 
    assert(Begin <= End && End <= Size);
 
    if (Begin == End)
 
      return -1;
 
 
 
    unsigned LastWord = (End - 1) / BITWORD_SIZE;
 
    unsigned FirstWord = Begin / BITWORD_SIZE;
 
 
 
    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
 
      unsigned CurrentWord = i - 1;
 
 
 
      BitWord Copy = Bits[CurrentWord];
 
      if (CurrentWord == LastWord) {
 
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
 
        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
 
      }
 
 
 
      if (CurrentWord == FirstWord) {
 
        unsigned FirstBit = Begin % BITWORD_SIZE;
 
        Copy |= maskTrailingOnes<BitWord>(FirstBit);
 
      }
 
 
 
      if (Copy != ~BitWord(0)) {
 
        unsigned Result =
 
            (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
 
        return Result < Size ? Result : -1;
 
      }
 
    }
 
    return -1;
 
  }
 
 
 
  /// find_first - Returns the index of the first set bit, -1 if none
 
  /// of the bits are set.
 
  int find_first() const { return find_first_in(0, Size); }
 
 
 
  /// find_last - Returns the index of the last set bit, -1 if none of the bits
 
  /// are set.
 
  int find_last() const { return find_last_in(0, Size); }
 
 
 
  /// find_next - Returns the index of the next set bit following the
 
  /// "Prev" bit. Returns -1 if the next set bit is not found.
 
  int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
 
 
 
  /// find_prev - Returns the index of the first set bit that precedes the
 
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
 
  int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
 
 
 
  /// find_first_unset - Returns the index of the first unset bit, -1 if all
 
  /// of the bits are set.
 
  int find_first_unset() const { return find_first_unset_in(0, Size); }
 
 
 
  /// find_next_unset - Returns the index of the next unset bit following the
 
  /// "Prev" bit.  Returns -1 if all remaining bits are set.
 
  int find_next_unset(unsigned Prev) const {
 
    return find_first_unset_in(Prev + 1, Size);
 
  }
 
 
 
  /// find_last_unset - Returns the index of the last unset bit, -1 if all of
 
  /// the bits are set.
 
  int find_last_unset() const { return find_last_unset_in(0, Size); }
 
 
 
  /// find_prev_unset - Returns the index of the first unset bit that precedes
 
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
 
  int find_prev_unset(unsigned PriorTo) {
 
    return find_last_unset_in(0, PriorTo);
 
  }
 
 
 
  /// clear - Removes all bits from the bitvector.
 
  void clear() {
 
    Size = 0;
 
    Bits.clear();
 
  }
 
 
 
  /// resize - Grow or shrink the bitvector.
 
  void resize(unsigned N, bool t = false) {
 
    set_unused_bits(t);
 
    Size = N;
 
    Bits.resize(NumBitWords(N), 0 - BitWord(t));
 
    clear_unused_bits();
 
  }
 
 
 
  void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); }
 
 
 
  // Set, reset, flip
 
  BitVector &set() {
 
    init_words(true);
 
    clear_unused_bits();
 
    return *this;
 
  }
 
 
 
  BitVector &set(unsigned Idx) {
 
    assert(Idx < Size && "access in bound");
 
    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
 
    return *this;
 
  }
 
 
 
  /// set - Efficiently set a range of bits in [I, E)
 
  BitVector &set(unsigned I, unsigned E) {
 
    assert(I <= E && "Attempted to set backwards range!");
 
    assert(E <= size() && "Attempted to set out-of-bounds range!");
 
 
 
    if (I == E) return *this;
 
 
 
    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
 
      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
 
      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
 
      BitWord Mask = EMask - IMask;
 
      Bits[I / BITWORD_SIZE] |= Mask;
 
      return *this;
 
    }
 
 
 
    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
 
    Bits[I / BITWORD_SIZE] |= PrefixMask;
 
    I = alignTo(I, BITWORD_SIZE);
 
 
 
    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
 
      Bits[I / BITWORD_SIZE] = ~BitWord(0);
 
 
 
    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
 
    if (I < E)
 
      Bits[I / BITWORD_SIZE] |= PostfixMask;
 
 
 
    return *this;
 
  }
 
 
 
  BitVector &reset() {
 
    init_words(false);
 
    return *this;
 
  }
 
 
 
  BitVector &reset(unsigned Idx) {
 
    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
 
    return *this;
 
  }
 
 
 
  /// reset - Efficiently reset a range of bits in [I, E)
 
  BitVector &reset(unsigned I, unsigned E) {
 
    assert(I <= E && "Attempted to reset backwards range!");
 
    assert(E <= size() && "Attempted to reset out-of-bounds range!");
 
 
 
    if (I == E) return *this;
 
 
 
    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
 
      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
 
      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
 
      BitWord Mask = EMask - IMask;
 
      Bits[I / BITWORD_SIZE] &= ~Mask;
 
      return *this;
 
    }
 
 
 
    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
 
    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
 
    I = alignTo(I, BITWORD_SIZE);
 
 
 
    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
 
      Bits[I / BITWORD_SIZE] = BitWord(0);
 
 
 
    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
 
    if (I < E)
 
      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
 
 
 
    return *this;
 
  }
 
 
 
  BitVector &flip() {
 
    for (auto &Bit : Bits)
 
      Bit = ~Bit;
 
    clear_unused_bits();
 
    return *this;
 
  }
 
 
 
  BitVector &flip(unsigned Idx) {
 
    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
 
    return *this;
 
  }
 
 
 
  // Indexing.
 
  reference operator[](unsigned Idx) {
 
    assert (Idx < Size && "Out-of-bounds Bit access.");
 
    return reference(*this, Idx);
 
  }
 
 
 
  bool operator[](unsigned Idx) const {
 
    assert (Idx < Size && "Out-of-bounds Bit access.");
 
    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
 
    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
 
  }
 
 
 
  /// Return the last element in the vector.
 
  bool back() const {
 
    assert(!empty() && "Getting last element of empty vector.");
 
    return (*this)[size() - 1];
 
  }
 
 
 
  bool test(unsigned Idx) const {
 
    return (*this)[Idx];
 
  }
 
 
 
  // Push single bit to end of vector.
 
  void push_back(bool Val) {
 
    unsigned OldSize = Size;
 
    unsigned NewSize = Size + 1;
 
 
 
    // Resize, which will insert zeros.
 
    // If we already fit then the unused bits will be already zero.
 
    if (NewSize > getBitCapacity())
 
      resize(NewSize, false);
 
    else
 
      Size = NewSize;
 
 
 
    // If true, set single bit.
 
    if (Val)
 
      set(OldSize);
 
  }
 
 
 
  /// Pop one bit from the end of the vector.
 
  void pop_back() {
 
    assert(!empty() && "Empty vector has no element to pop.");
 
    resize(size() - 1);
 
  }
 
 
 
  /// Test if any common bits are set.
 
  bool anyCommon(const BitVector &RHS) const {
 
    unsigned ThisWords = Bits.size();
 
    unsigned RHSWords = RHS.Bits.size();
 
    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
 
      if (Bits[i] & RHS.Bits[i])
 
        return true;
 
    return false;
 
  }
 
 
 
  // Comparison operators.
 
  bool operator==(const BitVector &RHS) const {
 
    if (size() != RHS.size())
 
      return false;
 
    unsigned NumWords = Bits.size();
 
    return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin());
 
  }
 
 
 
  bool operator!=(const BitVector &RHS) const { return !(*this == RHS); }
 
 
 
  /// Intersection, union, disjoint union.
 
  BitVector &operator&=(const BitVector &RHS) {
 
    unsigned ThisWords = Bits.size();
 
    unsigned RHSWords = RHS.Bits.size();
 
    unsigned i;
 
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 
      Bits[i] &= RHS.Bits[i];
 
 
 
    // Any bits that are just in this bitvector become zero, because they aren't
 
    // in the RHS bit vector.  Any words only in RHS are ignored because they
 
    // are already zero in the LHS.
 
    for (; i != ThisWords; ++i)
 
      Bits[i] = 0;
 
 
 
    return *this;
 
  }
 
 
 
  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
 
  BitVector &reset(const BitVector &RHS) {
 
    unsigned ThisWords = Bits.size();
 
    unsigned RHSWords = RHS.Bits.size();
 
    for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i)
 
      Bits[i] &= ~RHS.Bits[i];
 
    return *this;
 
  }
 
 
 
  /// test - Check if (This - RHS) is zero.
 
  /// This is the same as reset(RHS) and any().
 
  bool test(const BitVector &RHS) const {
 
    unsigned ThisWords = Bits.size();
 
    unsigned RHSWords = RHS.Bits.size();
 
    unsigned i;
 
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 
      if ((Bits[i] & ~RHS.Bits[i]) != 0)
 
        return true;
 
 
 
    for (; i != ThisWords ; ++i)
 
      if (Bits[i] != 0)
 
        return true;
 
 
 
    return false;
 
  }
 
 
 
  template <class F, class... ArgTys>
 
  static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg,
 
                          ArgTys const &...Args) {
 
    assert(llvm::all_of(
 
               std::initializer_list<unsigned>{Args.size()...},
 
               [&Arg](auto const &BV) { return Arg.size() == BV; }) &&
 
           "consistent sizes");
 
    Out.resize(Arg.size());
 
    for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I)
 
      Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...);
 
    Out.clear_unused_bits();
 
    return Out;
 
  }
 
 
 
  BitVector &operator|=(const BitVector &RHS) {
 
    if (size() < RHS.size())
 
      resize(RHS.size());
 
    for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I)
 
      Bits[I] |= RHS.Bits[I];
 
    return *this;
 
  }
 
 
 
  BitVector &operator^=(const BitVector &RHS) {
 
    if (size() < RHS.size())
 
      resize(RHS.size());
 
    for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I)
 
      Bits[I] ^= RHS.Bits[I];
 
    return *this;
 
  }
 
 
 
  BitVector &operator>>=(unsigned N) {
 
    assert(N <= Size);
 
    if (LLVM_UNLIKELY(empty() || N == 0))
 
      return *this;
 
 
 
    unsigned NumWords = Bits.size();
 
    assert(NumWords >= 1);
 
 
 
    wordShr(N / BITWORD_SIZE);
 
 
 
    unsigned BitDistance = N % BITWORD_SIZE;
 
    if (BitDistance == 0)
 
      return *this;
 
 
 
    // When the shift size is not a multiple of the word size, then we have
 
    // a tricky situation where each word in succession needs to extract some
 
    // of the bits from the next word and or them into this word while
 
    // shifting this word to make room for the new bits.  This has to be done
 
    // for every word in the array.
 
 
 
    // Since we're shifting each word right, some bits will fall off the end
 
    // of each word to the right, and empty space will be created on the left.
 
    // The final word in the array will lose bits permanently, so starting at
 
    // the beginning, work forwards shifting each word to the right, and
 
    // OR'ing in the bits from the end of the next word to the beginning of
 
    // the current word.
 
 
 
    // Example:
 
    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
 
    //   by 4 bits.
 
    // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
 
    // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
 
    // Step 3: Word[1] >>= 4           ; 0x0EEFF001
 
    // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
 
    // Step 5: Word[2] >>= 4           ; 0x02334455
 
    // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
 
    const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
 
    const unsigned LSH = BITWORD_SIZE - BitDistance;
 
 
 
    for (unsigned I = 0; I < NumWords - 1; ++I) {
 
      Bits[I] >>= BitDistance;
 
      Bits[I] |= (Bits[I + 1] & Mask) << LSH;
 
    }
 
 
 
    Bits[NumWords - 1] >>= BitDistance;
 
 
 
    return *this;
 
  }
 
 
 
  BitVector &operator<<=(unsigned N) {
 
    assert(N <= Size);
 
    if (LLVM_UNLIKELY(empty() || N == 0))
 
      return *this;
 
 
 
    unsigned NumWords = Bits.size();
 
    assert(NumWords >= 1);
 
 
 
    wordShl(N / BITWORD_SIZE);
 
 
 
    unsigned BitDistance = N % BITWORD_SIZE;
 
    if (BitDistance == 0)
 
      return *this;
 
 
 
    // When the shift size is not a multiple of the word size, then we have
 
    // a tricky situation where each word in succession needs to extract some
 
    // of the bits from the previous word and or them into this word while
 
    // shifting this word to make room for the new bits.  This has to be done
 
    // for every word in the array.  This is similar to the algorithm outlined
 
    // in operator>>=, but backwards.
 
 
 
    // Since we're shifting each word left, some bits will fall off the end
 
    // of each word to the left, and empty space will be created on the right.
 
    // The first word in the array will lose bits permanently, so starting at
 
    // the end, work backwards shifting each word to the left, and OR'ing
 
    // in the bits from the end of the next word to the beginning of the
 
    // current word.
 
 
 
    // Example:
 
    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
 
    //   by 4 bits.
 
    // Step 1: Word[2] <<= 4           ; 0x23344550
 
    // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
 
    // Step 3: Word[1] <<= 4           ; 0xEFF00110
 
    // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
 
    // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
 
    // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
 
    const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
 
    const unsigned RSH = BITWORD_SIZE - BitDistance;
 
 
 
    for (int I = NumWords - 1; I > 0; --I) {
 
      Bits[I] <<= BitDistance;
 
      Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
 
    }
 
    Bits[0] <<= BitDistance;
 
    clear_unused_bits();
 
 
 
    return *this;
 
  }
 
 
 
  void swap(BitVector &RHS) {
 
    std::swap(Bits, RHS.Bits);
 
    std::swap(Size, RHS.Size);
 
  }
 
 
 
  void invalid() {
 
    assert(!Size && Bits.empty());
 
    Size = (unsigned)-1;
 
  }
 
  bool isInvalid() const { return Size == (unsigned)-1; }
 
 
 
  ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Portable bit mask operations.
 
  //===--------------------------------------------------------------------===//
 
  //
 
  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
 
  // fixed word size makes it easier to work with literal bit vector constants
 
  // in portable code.
 
  //
 
  // The LSB in each word is the lowest numbered bit.  The size of a portable
 
  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
 
  // given, the bit mask is assumed to cover the entire BitVector.
 
 
 
  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
 
  /// This computes "*this |= Mask".
 
  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    applyMask<true, false>(Mask, MaskWords);
 
  }
 
 
 
  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
 
  /// Don't resize. This computes "*this &= ~Mask".
 
  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    applyMask<false, false>(Mask, MaskWords);
 
  }
 
 
 
  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
 
  /// Don't resize.  This computes "*this |= ~Mask".
 
  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    applyMask<true, true>(Mask, MaskWords);
 
  }
 
 
 
  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
 
  /// Don't resize.  This computes "*this &= Mask".
 
  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 
    applyMask<false, true>(Mask, MaskWords);
 
  }
 
 
 
private:
 
  /// Perform a logical left shift of \p Count words by moving everything
 
  /// \p Count words to the right in memory.
 
  ///
 
  /// While confusing, words are stored from least significant at Bits[0] to
 
  /// most significant at Bits[NumWords-1].  A logical shift left, however,
 
  /// moves the current least significant bit to a higher logical index, and
 
  /// fills the previous least significant bits with 0.  Thus, we actually
 
  /// need to move the bytes of the memory to the right, not to the left.
 
  /// Example:
 
  ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
 
  /// represents a BitVector where 0xBBBBAAAA contain the least significant
 
  /// bits.  So if we want to shift the BitVector left by 2 words, we need
 
  /// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
 
  /// memmove which moves right, not left.
 
  void wordShl(uint32_t Count) {
 
    if (Count == 0)
 
      return;
 
 
 
    uint32_t NumWords = Bits.size();
 
 
 
    // Since we always move Word-sized chunks of data with src and dest both
 
    // aligned to a word-boundary, we don't need to worry about endianness
 
    // here.
 
    std::copy(Bits.begin(), Bits.begin() + NumWords - Count,
 
              Bits.begin() + Count);
 
    std::fill(Bits.begin(), Bits.begin() + Count, 0);
 
    clear_unused_bits();
 
  }
 
 
 
  /// Perform a logical right shift of \p Count words by moving those
 
  /// words to the left in memory.  See wordShl for more information.
 
  ///
 
  void wordShr(uint32_t Count) {
 
    if (Count == 0)
 
      return;
 
 
 
    uint32_t NumWords = Bits.size();
 
 
 
    std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin());
 
    std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0);
 
  }
 
 
 
  int next_unset_in_word(int WordIndex, BitWord Word) const {
 
    unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
 
    return Result < size() ? Result : -1;
 
  }
 
 
 
  unsigned NumBitWords(unsigned S) const {
 
    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
 
  }
 
 
 
  // Set the unused bits in the high words.
 
  void set_unused_bits(bool t = true) {
 
    //  Then set any stray high bits of the last used word.
 
    if (unsigned ExtraBits = Size % BITWORD_SIZE) {
 
      BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
 
      if (t)
 
        Bits.back() |= ExtraBitMask;
 
      else
 
        Bits.back() &= ~ExtraBitMask;
 
    }
 
  }
 
 
 
  // Clear the unused bits in the high words.
 
  void clear_unused_bits() {
 
    set_unused_bits(false);
 
  }
 
 
 
  void init_words(bool t) {
 
    std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t);
 
  }
 
 
 
  template<bool AddBits, bool InvertMask>
 
  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
 
    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
 
    MaskWords = std::min(MaskWords, (size() + 31) / 32);
 
    const unsigned Scale = BITWORD_SIZE / 32;
 
    unsigned i;
 
    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
 
      BitWord BW = Bits[i];
 
      // This inner loop should unroll completely when BITWORD_SIZE > 32.
 
      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
 
        uint32_t M = *Mask++;
 
        if (InvertMask) M = ~M;
 
        if (AddBits) BW |=   BitWord(M) << b;
 
        else         BW &= ~(BitWord(M) << b);
 
      }
 
      Bits[i] = BW;
 
    }
 
    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
 
      uint32_t M = *Mask++;
 
      if (InvertMask) M = ~M;
 
      if (AddBits) Bits[i] |=   BitWord(M) << b;
 
      else         Bits[i] &= ~(BitWord(M) << b);
 
    }
 
    if (AddBits)
 
      clear_unused_bits();
 
  }
 
 
 
public:
 
  /// Return the size (in bytes) of the bit vector.
 
  size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); }
 
  size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
 
};
 
 
 
inline BitVector::size_type capacity_in_bytes(const BitVector &X) {
 
  return X.getMemorySize();
 
}
 
 
 
template <> struct DenseMapInfo<BitVector> {
 
  static inline BitVector getEmptyKey() { return {}; }
 
  static inline BitVector getTombstoneKey() {
 
    BitVector V;
 
    V.invalid();
 
    return V;
 
  }
 
  static unsigned getHashValue(const BitVector &V) {
 
    return DenseMapInfo<std::pair<BitVector::size_type, ArrayRef<uintptr_t>>>::
 
        getHashValue(std::make_pair(V.size(), V.getData()));
 
  }
 
  static bool isEqual(const BitVector &LHS, const BitVector &RHS) {
 
    if (LHS.isInvalid() || RHS.isInvalid())
 
      return LHS.isInvalid() == RHS.isInvalid();
 
    return LHS == RHS;
 
  }
 
};
 
} // end namespace llvm
 
 
 
namespace std {
 
  /// Implement std::swap in terms of BitVector swap.
 
inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); }
 
} // end namespace std
 
 
 
#endif // LLVM_ADT_BITVECTOR_H