- //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ADT_ARRAYREF_H 
- #define LLVM_ADT_ARRAYREF_H 
-   
- #include "llvm/ADT/Hashing.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/ADT/STLExtras.h" 
- #include "llvm/Support/Compiler.h" 
- #include <algorithm> 
- #include <array> 
- #include <cassert> 
- #include <cstddef> 
- #include <initializer_list> 
- #include <iterator> 
- #include <memory> 
- #include <type_traits> 
- #include <vector> 
-   
- namespace llvm { 
-   template<typename T> class [[nodiscard]] MutableArrayRef; 
-   
-   /// ArrayRef - Represent a constant reference to an array (0 or more elements 
-   /// consecutively in memory), i.e. a start pointer and a length.  It allows 
-   /// various APIs to take consecutive elements easily and conveniently. 
-   /// 
-   /// This class does not own the underlying data, it is expected to be used in 
-   /// situations where the data resides in some other buffer, whose lifetime 
-   /// extends past that of the ArrayRef. For this reason, it is not in general 
-   /// safe to store an ArrayRef. 
-   /// 
-   /// This is intended to be trivially copyable, so it should be passed by 
-   /// value. 
-   template<typename T> 
-   class LLVM_GSL_POINTER [[nodiscard]] ArrayRef { 
-   public: 
-     using value_type = T; 
-     using pointer = value_type *; 
-     using const_pointer = const value_type *; 
-     using reference = value_type &; 
-     using const_reference = const value_type &; 
-     using iterator = const_pointer; 
-     using const_iterator = const_pointer; 
-     using reverse_iterator = std::reverse_iterator<iterator>; 
-     using const_reverse_iterator = std::reverse_iterator<const_iterator>; 
-     using size_type = size_t; 
-     using difference_type = ptrdiff_t; 
-   
-   private: 
-     /// The start of the array, in an external buffer. 
-     const T *Data = nullptr; 
-   
-     /// The number of elements. 
-     size_type Length = 0; 
-   
-   public: 
-     /// @name Constructors 
-     /// @{ 
-   
-     /// Construct an empty ArrayRef. 
-     /*implicit*/ ArrayRef() = default; 
-   
-     /// Construct an empty ArrayRef from std::nullopt. 
-     /*implicit*/ ArrayRef(std::nullopt_t) {} 
-   
-     /// Construct an ArrayRef from a single element. 
-     /*implicit*/ ArrayRef(const T &OneElt) 
-       : Data(&OneElt), Length(1) {} 
-   
-     /// Construct an ArrayRef from a pointer and length. 
-     constexpr /*implicit*/ ArrayRef(const T *data, size_t length) 
-         : Data(data), Length(length) {} 
-   
-     /// Construct an ArrayRef from a range. 
-     constexpr ArrayRef(const T *begin, const T *end) 
-         : Data(begin), Length(end - begin) {} 
-   
-     /// Construct an ArrayRef from a SmallVector. This is templated in order to 
-     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we 
-     /// copy-construct an ArrayRef. 
-     template<typename U> 
-     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) 
-       : Data(Vec.data()), Length(Vec.size()) { 
-     } 
-   
-     /// Construct an ArrayRef from a std::vector. 
-     template<typename A> 
-     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) 
-       : Data(Vec.data()), Length(Vec.size()) {} 
-   
-     /// Construct an ArrayRef from a std::array 
-     template <size_t N> 
-     /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) 
-         : Data(Arr.data()), Length(N) {} 
-   
-     /// Construct an ArrayRef from a C array. 
-     template <size_t N> 
-     /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} 
-   
-     /// Construct an ArrayRef from a std::initializer_list. 
- #if LLVM_GNUC_PREREQ(9, 0, 0) 
- // Disable gcc's warning in this constructor as it generates an enormous amount 
- // of messages. Anyone using ArrayRef should already be aware of the fact that 
- // it does not do lifetime extension. 
- #pragma GCC diagnostic push 
- #pragma GCC diagnostic ignored "-Winit-list-lifetime" 
- #endif 
-     constexpr /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) 
-         : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()), 
-           Length(Vec.size()) {} 
- #if LLVM_GNUC_PREREQ(9, 0, 0) 
- #pragma GCC diagnostic pop 
- #endif 
-   
-     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to 
-     /// ensure that only ArrayRefs of pointers can be converted. 
-     template <typename U> 
-     ArrayRef(const ArrayRef<U *> &A, 
-              std::enable_if_t<std::is_convertible<U *const *, T const *>::value> 
-                  * = nullptr) 
-         : Data(A.data()), Length(A.size()) {} 
-   
-     /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is 
-     /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> 
-     /// whenever we copy-construct an ArrayRef. 
-     template <typename U, typename DummyT> 
-     /*implicit*/ ArrayRef( 
-         const SmallVectorTemplateCommon<U *, DummyT> &Vec, 
-         std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = 
-             nullptr) 
-         : Data(Vec.data()), Length(Vec.size()) {} 
-   
-     /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE 
-     /// to ensure that only vectors of pointers can be converted. 
-     template <typename U, typename A> 
-     ArrayRef(const std::vector<U *, A> &Vec, 
-              std::enable_if_t<std::is_convertible<U *const *, T const *>::value> 
-                  * = nullptr) 
-         : Data(Vec.data()), Length(Vec.size()) {} 
-   
-     /// @} 
-     /// @name Simple Operations 
-     /// @{ 
-   
-     iterator begin() const { return Data; } 
-     iterator end() const { return Data + Length; } 
-   
-     reverse_iterator rbegin() const { return reverse_iterator(end()); } 
-     reverse_iterator rend() const { return reverse_iterator(begin()); } 
-   
-     /// empty - Check if the array is empty. 
-     bool empty() const { return Length == 0; } 
-   
-     const T *data() const { return Data; } 
-   
-     /// size - Get the array size. 
-     size_t size() const { return Length; } 
-   
-     /// front - Get the first element. 
-     const T &front() const { 
-       assert(!empty()); 
-       return Data[0]; 
-     } 
-   
-     /// back - Get the last element. 
-     const T &back() const { 
-       assert(!empty()); 
-       return Data[Length-1]; 
-     } 
-   
-     // copy - Allocate copy in Allocator and return ArrayRef<T> to it. 
-     template <typename Allocator> MutableArrayRef<T> copy(Allocator &A) { 
-       T *Buff = A.template Allocate<T>(Length); 
-       std::uninitialized_copy(begin(), end(), Buff); 
-       return MutableArrayRef<T>(Buff, Length); 
-     } 
-   
-     /// equals - Check for element-wise equality. 
-     bool equals(ArrayRef RHS) const { 
-       if (Length != RHS.Length) 
-         return false; 
-       return std::equal(begin(), end(), RHS.begin()); 
-     } 
-   
-     /// slice(n, m) - Chop off the first N elements of the array, and keep M 
-     /// elements in the array. 
-     ArrayRef<T> slice(size_t N, size_t M) const { 
-       assert(N+M <= size() && "Invalid specifier"); 
-       return ArrayRef<T>(data()+N, M); 
-     } 
-   
-     /// slice(n) - Chop off the first N elements of the array. 
-     ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } 
-   
-     /// Drop the first \p N elements of the array. 
-     ArrayRef<T> drop_front(size_t N = 1) const { 
-       assert(size() >= N && "Dropping more elements than exist"); 
-       return slice(N, size() - N); 
-     } 
-   
-     /// Drop the last \p N elements of the array. 
-     ArrayRef<T> drop_back(size_t N = 1) const { 
-       assert(size() >= N && "Dropping more elements than exist"); 
-       return slice(0, size() - N); 
-     } 
-   
-     /// Return a copy of *this with the first N elements satisfying the 
-     /// given predicate removed. 
-     template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { 
-       return ArrayRef<T>(find_if_not(*this, Pred), end()); 
-     } 
-   
-     /// Return a copy of *this with the first N elements not satisfying 
-     /// the given predicate removed. 
-     template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { 
-       return ArrayRef<T>(find_if(*this, Pred), end()); 
-     } 
-   
-     /// Return a copy of *this with only the first \p N elements. 
-     ArrayRef<T> take_front(size_t N = 1) const { 
-       if (N >= size()) 
-         return *this; 
-       return drop_back(size() - N); 
-     } 
-   
-     /// Return a copy of *this with only the last \p N elements. 
-     ArrayRef<T> take_back(size_t N = 1) const { 
-       if (N >= size()) 
-         return *this; 
-       return drop_front(size() - N); 
-     } 
-   
-     /// Return the first N elements of this Array that satisfy the given 
-     /// predicate. 
-     template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { 
-       return ArrayRef<T>(begin(), find_if_not(*this, Pred)); 
-     } 
-   
-     /// Return the first N elements of this Array that don't satisfy the 
-     /// given predicate. 
-     template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { 
-       return ArrayRef<T>(begin(), find_if(*this, Pred)); 
-     } 
-   
-     /// @} 
-     /// @name Operator Overloads 
-     /// @{ 
-     const T &operator[](size_t Index) const { 
-       assert(Index < Length && "Invalid index!"); 
-       return Data[Index]; 
-     } 
-   
-     /// Disallow accidental assignment from a temporary. 
-     /// 
-     /// The declaration here is extra complicated so that "arrayRef = {}" 
-     /// continues to select the move assignment operator. 
-     template <typename U> 
-     std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & 
-     operator=(U &&Temporary) = delete; 
-   
-     /// Disallow accidental assignment from a temporary. 
-     /// 
-     /// The declaration here is extra complicated so that "arrayRef = {}" 
-     /// continues to select the move assignment operator. 
-     template <typename U> 
-     std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & 
-     operator=(std::initializer_list<U>) = delete; 
-   
-     /// @} 
-     /// @name Expensive Operations 
-     /// @{ 
-     std::vector<T> vec() const { 
-       return std::vector<T>(Data, Data+Length); 
-     } 
-   
-     /// @} 
-     /// @name Conversion operators 
-     /// @{ 
-     operator std::vector<T>() const { 
-       return std::vector<T>(Data, Data+Length); 
-     } 
-   
-     /// @} 
-   }; 
-   
-   /// MutableArrayRef - Represent a mutable reference to an array (0 or more 
-   /// elements consecutively in memory), i.e. a start pointer and a length.  It 
-   /// allows various APIs to take and modify consecutive elements easily and 
-   /// conveniently. 
-   /// 
-   /// This class does not own the underlying data, it is expected to be used in 
-   /// situations where the data resides in some other buffer, whose lifetime 
-   /// extends past that of the MutableArrayRef. For this reason, it is not in 
-   /// general safe to store a MutableArrayRef. 
-   /// 
-   /// This is intended to be trivially copyable, so it should be passed by 
-   /// value. 
-   template<typename T> 
-   class [[nodiscard]] MutableArrayRef : public ArrayRef<T> { 
-   public: 
-     using value_type = T; 
-     using pointer = value_type *; 
-     using const_pointer = const value_type *; 
-     using reference = value_type &; 
-     using const_reference = const value_type &; 
-     using iterator = pointer; 
-     using const_iterator = const_pointer; 
-     using reverse_iterator = std::reverse_iterator<iterator>; 
-     using const_reverse_iterator = std::reverse_iterator<const_iterator>; 
-     using size_type = size_t; 
-     using difference_type = ptrdiff_t; 
-   
-     /// Construct an empty MutableArrayRef. 
-     /*implicit*/ MutableArrayRef() = default; 
-   
-     /// Construct an empty MutableArrayRef from std::nullopt. 
-     /*implicit*/ MutableArrayRef(std::nullopt_t) : ArrayRef<T>() {} 
-   
-     /// Construct a MutableArrayRef from a single element. 
-     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} 
-   
-     /// Construct a MutableArrayRef from a pointer and length. 
-     /*implicit*/ MutableArrayRef(T *data, size_t length) 
-       : ArrayRef<T>(data, length) {} 
-   
-     /// Construct a MutableArrayRef from a range. 
-     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} 
-   
-     /// Construct a MutableArrayRef from a SmallVector. 
-     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) 
-     : ArrayRef<T>(Vec) {} 
-   
-     /// Construct a MutableArrayRef from a std::vector. 
-     /*implicit*/ MutableArrayRef(std::vector<T> &Vec) 
-     : ArrayRef<T>(Vec) {} 
-   
-     /// Construct a MutableArrayRef from a std::array 
-     template <size_t N> 
-     /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) 
-         : ArrayRef<T>(Arr) {} 
-   
-     /// Construct a MutableArrayRef from a C array. 
-     template <size_t N> 
-     /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} 
-   
-     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } 
-   
-     iterator begin() const { return data(); } 
-     iterator end() const { return data() + this->size(); } 
-   
-     reverse_iterator rbegin() const { return reverse_iterator(end()); } 
-     reverse_iterator rend() const { return reverse_iterator(begin()); } 
-   
-     /// front - Get the first element. 
-     T &front() const { 
-       assert(!this->empty()); 
-       return data()[0]; 
-     } 
-   
-     /// back - Get the last element. 
-     T &back() const { 
-       assert(!this->empty()); 
-       return data()[this->size()-1]; 
-     } 
-   
-     /// slice(n, m) - Chop off the first N elements of the array, and keep M 
-     /// elements in the array. 
-     MutableArrayRef<T> slice(size_t N, size_t M) const { 
-       assert(N + M <= this->size() && "Invalid specifier"); 
-       return MutableArrayRef<T>(this->data() + N, M); 
-     } 
-   
-     /// slice(n) - Chop off the first N elements of the array. 
-     MutableArrayRef<T> slice(size_t N) const { 
-       return slice(N, this->size() - N); 
-     } 
-   
-     /// Drop the first \p N elements of the array. 
-     MutableArrayRef<T> drop_front(size_t N = 1) const { 
-       assert(this->size() >= N && "Dropping more elements than exist"); 
-       return slice(N, this->size() - N); 
-     } 
-   
-     MutableArrayRef<T> drop_back(size_t N = 1) const { 
-       assert(this->size() >= N && "Dropping more elements than exist"); 
-       return slice(0, this->size() - N); 
-     } 
-   
-     /// Return a copy of *this with the first N elements satisfying the 
-     /// given predicate removed. 
-     template <class PredicateT> 
-     MutableArrayRef<T> drop_while(PredicateT Pred) const { 
-       return MutableArrayRef<T>(find_if_not(*this, Pred), end()); 
-     } 
-   
-     /// Return a copy of *this with the first N elements not satisfying 
-     /// the given predicate removed. 
-     template <class PredicateT> 
-     MutableArrayRef<T> drop_until(PredicateT Pred) const { 
-       return MutableArrayRef<T>(find_if(*this, Pred), end()); 
-     } 
-   
-     /// Return a copy of *this with only the first \p N elements. 
-     MutableArrayRef<T> take_front(size_t N = 1) const { 
-       if (N >= this->size()) 
-         return *this; 
-       return drop_back(this->size() - N); 
-     } 
-   
-     /// Return a copy of *this with only the last \p N elements. 
-     MutableArrayRef<T> take_back(size_t N = 1) const { 
-       if (N >= this->size()) 
-         return *this; 
-       return drop_front(this->size() - N); 
-     } 
-   
-     /// Return the first N elements of this Array that satisfy the given 
-     /// predicate. 
-     template <class PredicateT> 
-     MutableArrayRef<T> take_while(PredicateT Pred) const { 
-       return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); 
-     } 
-   
-     /// Return the first N elements of this Array that don't satisfy the 
-     /// given predicate. 
-     template <class PredicateT> 
-     MutableArrayRef<T> take_until(PredicateT Pred) const { 
-       return MutableArrayRef<T>(begin(), find_if(*this, Pred)); 
-     } 
-   
-     /// @} 
-     /// @name Operator Overloads 
-     /// @{ 
-     T &operator[](size_t Index) const { 
-       assert(Index < this->size() && "Invalid index!"); 
-       return data()[Index]; 
-     } 
-   }; 
-   
-   /// This is a MutableArrayRef that owns its array. 
-   template <typename T> class OwningArrayRef : public MutableArrayRef<T> { 
-   public: 
-     OwningArrayRef() = default; 
-     OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} 
-   
-     OwningArrayRef(ArrayRef<T> Data) 
-         : MutableArrayRef<T>(new T[Data.size()], Data.size()) { 
-       std::copy(Data.begin(), Data.end(), this->begin()); 
-     } 
-   
-     OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } 
-   
-     OwningArrayRef &operator=(OwningArrayRef &&Other) { 
-       delete[] this->data(); 
-       this->MutableArrayRef<T>::operator=(Other); 
-       Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); 
-       return *this; 
-     } 
-   
-     ~OwningArrayRef() { delete[] this->data(); } 
-   }; 
-   
-   /// @name ArrayRef Deduction guides 
-   /// @{ 
-   /// Deduction guide to construct an ArrayRef from a single element. 
-   template <typename T> ArrayRef(const T &OneElt) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a pointer and length 
-   template <typename T> ArrayRef(const T *data, size_t length) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a range 
-   template <typename T> ArrayRef(const T *data, const T *end) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a SmallVector 
-   template <typename T> ArrayRef(const SmallVectorImpl<T> &Vec) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a SmallVector 
-   template <typename T, unsigned N> 
-   ArrayRef(const SmallVector<T, N> &Vec) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a std::vector 
-   template <typename T> ArrayRef(const std::vector<T> &Vec) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a std::array 
-   template <typename T, std::size_t N> 
-   ArrayRef(const std::array<T, N> &Vec) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from an ArrayRef (const) 
-   template <typename T> ArrayRef(const ArrayRef<T> &Vec) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from an ArrayRef 
-   template <typename T> ArrayRef(ArrayRef<T> &Vec) -> ArrayRef<T>; 
-   
-   /// Deduction guide to construct an ArrayRef from a C array. 
-   template <typename T, size_t N> ArrayRef(const T (&Arr)[N]) -> ArrayRef<T>; 
-   
-   /// @} 
-   
-   /// @name ArrayRef Convenience constructors 
-   /// @{ 
-   /// Construct an ArrayRef from a single element. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const T &OneElt) { 
-     return OneElt; 
-   } 
-   
-   /// Construct an ArrayRef from a pointer and length. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const T *data, size_t length) { 
-     return ArrayRef<T>(data, length); 
-   } 
-   
-   /// Construct an ArrayRef from a range. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const T *begin, const T *end) { 
-     return ArrayRef<T>(begin, end); 
-   } 
-   
-   /// Construct an ArrayRef from a SmallVector. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct an ArrayRef from a SmallVector. 
-   template <typename T, unsigned N> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct an ArrayRef from a std::vector. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct an ArrayRef from a std::array. 
-   template <typename T, std::size_t N> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) { 
-     return Arr; 
-   } 
-   
-   /// Construct an ArrayRef from an ArrayRef (no-op) (const) 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct an ArrayRef from an ArrayRef (no-op) 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct an ArrayRef from a C array. 
-   template <typename T, size_t N> 
-   LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef") 
-   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { 
-     return ArrayRef<T>(Arr); 
-   } 
-   
-   /// @name MutableArrayRef Deduction guides 
-   /// @{ 
-   /// Deduction guide to construct a `MutableArrayRef` from a single element 
-   template <class T> MutableArrayRef(T &OneElt) -> MutableArrayRef<T>; 
-   
-   /// Deduction guide to construct a `MutableArrayRef` from a pointer and 
-   /// length. 
-   template <class T> 
-   MutableArrayRef(T *data, size_t length) -> MutableArrayRef<T>; 
-   
-   /// Deduction guide to construct a `MutableArrayRef` from a `SmallVector`. 
-   template <class T> 
-   MutableArrayRef(SmallVectorImpl<T> &Vec) -> MutableArrayRef<T>; 
-   
-   template <class T, unsigned N> 
-   MutableArrayRef(SmallVector<T, N> &Vec) -> MutableArrayRef<T>; 
-   
-   /// Deduction guide to construct a `MutableArrayRef` from a `std::vector`. 
-   template <class T> MutableArrayRef(std::vector<T> &Vec) -> MutableArrayRef<T>; 
-   
-   /// Deduction guide to construct a `MutableArrayRef` from a `std::array`. 
-   template <class T, std::size_t N> 
-   MutableArrayRef(std::array<T, N> &Vec) -> MutableArrayRef<T>; 
-   
-   /// Deduction guide to construct a `MutableArrayRef` from a C array. 
-   template <typename T, size_t N> 
-   MutableArrayRef(T (&Arr)[N]) -> MutableArrayRef<T>; 
-   
-   /// @} 
-   
-   /// Construct a MutableArrayRef from a single element. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { 
-     return OneElt; 
-   } 
-   
-   /// Construct a MutableArrayRef from a pointer and length. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { 
-     return MutableArrayRef<T>(data, length); 
-   } 
-   
-   /// Construct a MutableArrayRef from a SmallVector. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(SmallVectorImpl<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct a MutableArrayRef from a SmallVector. 
-   template <typename T, unsigned N> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(SmallVector<T, N> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct a MutableArrayRef from a std::vector. 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(std::vector<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct a MutableArrayRef from a std::array. 
-   template <typename T, std::size_t N> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(std::array<T, N> &Arr) { 
-     return Arr; 
-   } 
-   
-   /// Construct a MutableArrayRef from a MutableArrayRef (no-op) (const) 
-   template <typename T> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(const MutableArrayRef<T> &Vec) { 
-     return Vec; 
-   } 
-   
-   /// Construct a MutableArrayRef from a C array. 
-   template <typename T, size_t N> 
-   LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef") 
-   MutableArrayRef<T> makeMutableArrayRef(T (&Arr)[N]) { 
-     return MutableArrayRef<T>(Arr); 
-   } 
-   
-   /// @} 
-   /// @name ArrayRef Comparison Operators 
-   /// @{ 
-   
-   template<typename T> 
-   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { 
-     return LHS.equals(RHS); 
-   } 
-   
-   template <typename T> 
-   inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { 
-     return ArrayRef<T>(LHS).equals(RHS); 
-   } 
-   
-   template <typename T> 
-   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { 
-     return !(LHS == RHS); 
-   } 
-   
-   template <typename T> 
-   inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { 
-     return !(LHS == RHS); 
-   } 
-   
-   /// @} 
-   
-   template <typename T> hash_code hash_value(ArrayRef<T> S) { 
-     return hash_combine_range(S.begin(), S.end()); 
-   } 
-   
-   // Provide DenseMapInfo for ArrayRefs. 
-   template <typename T> struct DenseMapInfo<ArrayRef<T>, void> { 
-     static inline ArrayRef<T> getEmptyKey() { 
-       return ArrayRef<T>( 
-           reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0)); 
-     } 
-   
-     static inline ArrayRef<T> getTombstoneKey() { 
-       return ArrayRef<T>( 
-           reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0)); 
-     } 
-   
-     static unsigned getHashValue(ArrayRef<T> Val) { 
-       assert(Val.data() != getEmptyKey().data() && 
-              "Cannot hash the empty key!"); 
-       assert(Val.data() != getTombstoneKey().data() && 
-              "Cannot hash the tombstone key!"); 
-       return (unsigned)(hash_value(Val)); 
-     } 
-   
-     static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) { 
-       if (RHS.data() == getEmptyKey().data()) 
-         return LHS.data() == getEmptyKey().data(); 
-       if (RHS.data() == getTombstoneKey().data()) 
-         return LHS.data() == getTombstoneKey().data(); 
-       return LHS == RHS; 
-     } 
-   }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_ADT_ARRAYREF_H 
-